

Anlage 11.4.1 Ergebnisbericht Benthos Eulitoral

NOR-9-2 / +-525-kV-DC-Leitung Konverterplattform NOR-9-2 – Wilhelmshaven2 Projekt/Vorhaben:

Abschnitt Seetrasse

Aufgestellt: Bayreuth, den 30.06.2023		U	nterla	ge zur Pl	anfestste	llung
i.V. Buil: 1.V	M. Henry					
Anlage 11.4.1 zum Vorhaben						
	I	NOR-9	-2			
±525 kV	-HGÜ-Offsh	ore-Ne	tzanbi	indungss	system	
Konvert	terplattform	NOR-	9-2 – V	/ilhelmsh	naven2	
für den Bereich der 1	12-sm-Grenz	e bis	Anland	dunaspui	nkt Dornu	ımerarode
	– Absch					
	- Abscii	iiiitt St	eu as			
Prüfvermerk						
Datum	06.06.2023					
Ersteller	IBL Umweltplanung GmbH					
Änderung(en):						
RevNr.	Datum	Erläute	rung			
1						
,			Anhäng Anhang des Gut	1: Klarstellu	ıng zur Verw	endung

Seetrassen "NOR-12-1, NOR-11-2 und NOR-13-1" im Küstenmeer

Benthosbiologische Korridoruntersuchungen 2022 Ergebnisbericht

Im Auftrag von

TenneT Offshore GmbH

RevNr. 2-0	06.06.2023	D. Wolters	D. Wolters
Version	Datum	geprüft	freigegeben

Auftraggeber

TenneT Offshore GmbH Eisenbahnlängsweg 2 a 31275 Lehrte

Ansprechpartner AG

Tel.: E-Mail: Lara Groscurth

+49 (0)151 74 28 14 60 lara.groscurth@tennet.eu

Auftragnehmer

IBL Umweltplanung GmbH Bahnhofstraße 14a 26122 Oldenburg

Tel.: +49 (0)441 505017-10 www.ibl-umweltplanung.de

Zust. Abteilungsleitung Projektleitung:

Bearbeitung:

D. Wolters A. Buck

Dr. J. Stecher, Dr. M. Stamm, M. Moick, A. Buck, A. van Hettinga

Projekt-Nr.:

1466

Inhaltsverzeichnis

1	Zusammenfassung	´
2	Anlass und Aufgabenstellung	2
3	Material und Methoden	5
3.1	Beprobung des Makrozoobenthos mittels Stechrohr	
3.2	Beprobung des Sediments	
3.3	Wattcharakerisierung mittels Zählrahmen	
3.4	Auswertung	
4	Ergebnisse	11
4.1	Makrozoobenthos (Stechrohr-Beprobung)	11
4.1.1	Artenspektrum	11
4.1.2	Rote Liste Arten und gefährdete Arten	13
4.1.3	Erstnachweis einer als potenziell invasiv geltenden Art im Untersuchungsgebiet	17
4.1.4	Gesamtartenzahl, -individuendichte und -biomasse	18
4.1.5	Abundanz, Stetigkeit und Biomasse	22
4.1.6	Dominanz bei Abundanz und Biomasse	27
4.1.7	Diversität	31
4.1.8	Multivariate Gemeinschaftsanalyse entlang der Trassen	32
4.2	Sediment (Stechrohrproben)	35
4.3	Wattbiotop-Charakerisierung durch Zählrahmen	38
5	Einordnung der Ergebnisse	
5.1	Makrozoobenthos	40
5.2	Sediment	41
5.3	Geschützte Biotope (nach § 30 BNatSchG)	
5.4	Fazit	4′
5.5	Schlussbemerkung	42
6	Literaturverzeichnis	43
7	Anhang	
8	Glossar	
Abbildung	sverzeichnis	
Abbildung 1	I: Übersicht über Trassenverlauf und Lage der Probenahme-Stationen	2
Abbildung 2	2: Übersicht über den geplanten Trassenverlauf und die Statione Benthosuntersuchungen (Stechrohr)	
Abbildung 3		
Abbildung 4	Prozentuale Verteilung der Arten pro taxonomischer Großgruppe	13
Abbildung 5	5: Mulinia lateralis rechte Seite, Fundort "Steinplate" am 20.10.2022	18
Abbildung 6	6: <i>Mulinia lateralis,</i> links: Blick in die linke geöffnete Klappe, rechts: Blick in die Klappe, Fundort "Steinplate" am 20.10.2022	
Abbildung 7		
Abbildung 8	·	
_		

Abbildung 9:	Biomasse (Feuchtgewicht g/m²) pro Station	21
Abbildung 10	Abundanzen der eudominanten und dominanten Makrozoobenthos-Arten	28
Abbildung 11:	Relative Abundanz (%) eudominanter und dominanter Arten	29
Abbildung 12:	Biomasse der eudominanten und dominanten Makrozoobenthos-Arten an Station	-
Abbildung 13:	Relative Biomasse (% von g Feuchtgewicht/m²) der eudominanten und domin Makrozoobenthos-Arten an jeder Station	
Abbildung 14:	Diversität nach Shannon-Wiener an jeder Station	32
Abbildung 15:	Clusteranalyse des Makrozoobenthos	
Abbildung 16:	MDS-Plot des Makrozoobenthos	33
Abbildung 17:	Korngrößenverteilung der Sedimente	36
Abbildung 18:	Sedimentverteilung 2022	37
Abbildung 19:	Dichte der makroskopisch ausgezählten Arten pro Zählrahmen	38
Tabellenverzeich	nnis	
Tabelle 1:	Biotische und abiotische Eckdaten im Untersuchungsgebiet	2
Tabelle 2:	Aufteilung der Probennahme-Stationen auf die drei Watt-Typen im Bereic geplanten Trassen	
Tabelle 3:	Übersicht der Siebmaschenweiten und entsprechende Kornfraktion	6
Tabelle 4:	Koordinaten der Probennahme-Stationen (Sediment und Stechrohre)	8
Tabelle 5:	Koordinaten der Zählrahmen-Stationen (Dezimal WGS84)	10
Tabelle 6:	Makrozoobenthos-Arten mit Zuordnung der Roten Liste-Kategorie	11
Tabelle 7	Nachweise der unmittelbar gefährdeten Arten im Untersuchungsgebiet	
Tabelle 8:	Mittlere Artenzahlen pro Stationen in den Biotoptypen	19
Tabelle 9:	Mittlere Abundanzen (Ind./m²) in den Biotoptypen	20
Tabelle 10:	Mittlere Biomasse (g Feuchtgewicht/m²) in den Biotoptypen	21
Tabelle 11:	Auflistung der Arten/ Taxa nach abnehmender Abundanz und Stetigkeit	23
Tabelle 12:	Auflistung der Arten/ Taxa nach abnehmender Biomasse	25
Tabelle 13	Einteilung der Dominanzklassen nach Engelmann, H-D. 1978	27
Tabelle 14	Mittlere Abundanzen (Ind./m²) der Makrozoobenthos-Arten in den drei Biotop	
Tabelle 15:	Biomasse der 15 Arten mit den höchsten Werten (% der gesamten Biomasse	e) . 30
Tabelle 16:	Shannon-Wiener Index H' in den Biotoptypen	31
Tabelle 17:	Charakterarten der Quertransekte und der Zwischenstationen (SIMPER Ana	
Tabelle 18:	Charakterisierung der Stationen anhand der Sedimentproben	35
Tabelle 19:	Prozentueller Deckungsgrad weiterer biotopprägender Arten/Taxa	39
Tabelle 20	Stationen mit Nachweis der Makrozoobenthosarten des Lebensraumtyps Vegetationsfreies Schlick-, Sand- und Mischwatt	
Fotoverzeichnis	•	
Foto 1:	Zählrahmen ZR_01	
Foto 2:	Zählrahmen ZR_02	
Foto 3:	Zählrahmen ZR_03	
Foto 4:	Zählrahmen ZR_04	
Foto 5:	Zählrahmen ZR_05	
Foto 6:	Zählrahmen ZR_06	40

Stand: 06.06.2023 Seite II von III

Foto 7:	Zählrahmen ZR_07	41
Foto 8:	Zählrahmen ZR_08	
Foto 9:	Zählrahmen ZR_09	
Foto 10:	Zählrahmen ZR_10	42
Foto 11:	Zählrahmen ZR_11	
Foto 12:	Zählrahmen ZR_12	
Foto 13:	Zählrahmen ZR_13	
Foto 14:	Zählrahmen ZR_14	
Foto 15:	Zählrahmen ZR_15	
Foto 16:	Zählrahmen ZR_16	45
Foto 17:	Zählrahmen ZR_17	46
Foto 18:	Zählrahmen ZR_18	46
Foto 19:	Zählrahmen ZR_19	47
Foto 20:	Zählrahmen ZR_20	47
Foto 21:	Zählrahmen ZR_21	48
Foto 22:	Zählrahmen ZR_22	48
Foto 23:	Zählrahmen ZR_23	49
Foto 24:	Zählrahmen ZR_24	49
Foto 25:	Zählrahmen ZR_25	50

1 Zusammenfassung

Im Rahmen des Planfeststellungsverfahrens für die Netzanbindungssysteme "NOR-12-1, NOR-11-2 und NOR-13-1" wurden im Auftrag der TenneT Offshore GmbH Benthos- und Sedimentbeprobungen im Watt zwischen Baltrum und Dornumersiel im Oktober und November 2022 durchgeführt. Im Folgenden werden die Ergebnisse der Untersuchungen im Watt zwischen Baltrum und Dornumersiel beschrieben.

Bei der Biotoptypenkartierung im Bereich der geplanten Leitungstrassen wurden Sandwatt (hell und dunkel), Mischwatt und Muschelbänke als die prägenden Wattbiotoptypen festgestellt. Diese drei Biotoptypen wurden im Hinblick auf die Sedimentzusammensetzung und die wirbellose Fauna im und auf dem Sediment (auch Benthos genannt) untersucht. Der Untersuchung liegt ein mit der Nationalparkverwaltung Niedersächsisches Wattenmeer als zuständiger Naturschutz-Fachbehörde abgestimmtes Untersuchungskonzept zugrunde.

Bei diesem kam es darauf an, die prägenden Wattbiotoptypen repräsentativ durch Probennahmen an einzelnen Stationen sowohl auf den geplanten Leitungslinien NOR-12-1, NOR-11-2 und NOR-13-1 als auch beiderseits dieser in einem Trassenkorridor von bis zu 600 m Breite jenseits der geplanten Leitungslinie zu erfassen (2 x 50 m zwischen den drei Leitungen zzgl. 2 x 250 m außenseitig des Korridors aus drei Systemen). Hierzu wurden quer über die geplanten Leitungen Transekte¹ mit einzelnen Stationen für die Probennahmen gelegt. Je Station wurden sechs Proben durch ein Stechrohr genommen.

Im Dornumer Watt und der Steinplate wurden drei Quertransekte mit jeweils vier Stationen, ein Quertransekt mit fünf Stationen und drei Zwischenstationen mittels Stechrohr beprobt. Im Baltrumer Inselwatt verteilen sich sechs Stationen auf ein Quertransekt mit vier Stationen und zwei Zwischenstationen direkt auf "NOR-11-2". Insgesamt wurden an 26 Stationen je sechs Stechrohrproben genommen (insgesamt 156 Benthosproben). An den zehn mittleren Stationen wurde zudem eine Sedimentprobe für die Korngrößenanalyse entnommen. Zusätzlich wurden je abgegrenzten Biotoptyp Zählrahmen ausgebracht, fotodokumentiert und ausgezählt. Zählrahmen sind einen Quadratmeter große Rahmen aus z. B. Metall mit einer Einteilung in gleichgroße Flächen (25 Felder zu je 20 x 20 cm). Mit Hilfe dieser Felder können die Besiedlungsspuren und wirbellosen Tiere innerhalb des Zählrahmens auf dem Watt besser quantitativ erfasst werden.

Das Sediment ist, den Biotoptypen entsprechend, von Fein- und Feinstsanden sowie ferner von Ton/Schluff geprägt.

Im Untersuchungsgebiet kommt die eulitorale Variante der *Macoma balthica*-Gemeinschaft vor, eine von der Baltischen oder Nordischen Tellmuschel geprägte Benthosgemeinschaft. Die Biotoptypen unterscheiden sich anhand der unterschiedlichen Besiedlungsmuster innerhalb dieser Gemeinschaft. Die Sandwattstationen sind durch den Kiemenringelwurm, die *Scoloplos armiger*-Besiedlung, geprägt, während die Mischwattstationen durch den typischen Wattwurm (*Arenicola marina*), die Gemeine Herzmuschel (*Cerastoderma edule* Populationen) und den Kotpillenwurm (*Heteromastus filiformis*) charakterisiert sind. Die Muschelbänke sind sehr variabel in ihrer Begleitfauna. In vorliegender Untersuchung sind die charakteristischen Begleitarten der Muschelbänke *Mytilus edulis* und *Magallana gigas*, *Lanice*

Stand: 06.06.2023 Seite 1 von 51

[&]quot;Methodik der Ökologie, Geologie, z. T. auch der Kartierung, um Daten standardisiert und in einem räumlichen Zusammenhang zu erheben. Entlang eines Transekts, einer markierten geraden Linie, nimmt man in festgelegten Abständen Daten auf. Diese Methodik wird verwendet, wenn man zum Untersuchungsgegenstand einen räumlichen Zusammenhang herstellen möchte. Oft wird diese Methode in der Ökologie (Botanik und Zoologie), zu Felduntersuchungen (Kartierung) und der Geologie und Geoökologie angewendet." (https://www.pflanzenforschung.de/de/pflanzenwissen/lexikon-a-z/transekt-10152)

conchilega, Austrominius modestus und Oligochaeta sowie Heteromastus filiformis, Macoma balthica und Scoloplos armiger.

Das Untersuchungsgebiet gehört zum Flora-Fauna-Habitat-Lebensraumtyp "Vegetationsfreies Schlick-Sand- und Mischwatt" (Natura 2000-Code 1140).

Insgesamt wurden 74 Taxa (Gruppen von Lebewesen) dokumentiert (64 auf Artniveau bestimmt), davon befinden sich fünf Arten auf der Roten Liste der gefährdeten Tiere Deutschlands. *Scrobicularia plana* (Große Pfeffermuschel) ist der Kategorie 1 (vom Aussterben bedroht), *Sigalion mathildae* (keine deutsche Bezeichnung), *Cumopsis goodsir* (keine deutsche Bezeichnung), *Lepidochitona cinerea* (Rändel/ Graue Käferschnecke) ist der Kategorie 3 (gefährdet) und *Sertularia cupressina* (Zypressenmoos, Seemoos) ist der Kategorie G (potenziell gefährdet) zuzuordnen. *Gammarus locusta* (Meer-/ Tang-Flohkrebs), *Melita palmata* (keine deutsche Bezeichnung) und *Macomangulus tenuis* (Platte Tellmuschel) befinden sich außerdem auf der Vornwarnliste. Weiterhin wurde ein Erstnachweis der als invasiv geltenden Art *Mulinia lateralis* (Amerikanische Trogmuschel) erbracht.

Anneliden (Ringel- bzw. Gliederwürmer) und Mollusken (Weichtiere) bilden die arten- und individuenreichsten Gruppen. Die mittlere Artenzahl im Untersuchungsgebiet liegt über alle untersuchten Bereiche
und Biotoptypen bei 16,1 ± 6,4 Arten pro Station, die mittlere Individuendichte bei 2.991,0 ±
2.718,8 Ind./m² pro Station. Zwischen den Stationen bestehen erhebliche Unterschiede in der Biomasse
(höchste Biomasse: 3.693,70 g Feuchtgewicht/m², geringste Biomasse: 1,10 g Feuchtgewicht/m²).Der
Tabelle 1 ist eine kurze Zusammenfassung der wichtigsten biotischen und abiotischen Eckdaten im
Untersuchungsgebiet zu entnehmen.

Im Glossar (Kap. 8) werden die im nachstehenden Text häufig benutzten Fachausdrücke erklärt.

Tabelle 1: Biotische und abiotische Eckdaten im Untersuchungsgebiet

	Sandwatt				
	hell	dunkel	Mischwatt	Muschelbank	Gesamt
Fein- und Feinstsandanteil	54,50%	20,37%	15,44%	9,68%	78,05%
Ton/Schluffanteil	18,00%	18,17%	52,86%	10,97%	5,46%
Mittlere Artenzahl pro Probe	13,80	12,50	19,80	20,4	16,10
Mittlere Abundanz (Ind./m²)	2.294,90	1.156,00	3.893,40	4.771,80	2.991,00
Mittleres Feuchtgewicht (g/m²)	207,70	445,0	1.117,60	1.809,3	708,90
RL1-Arten	-	-	1	1	1
Alle RL-Arten	1	-	2	3	5

2 Anlass und Aufgabenstellung

Die Tennet Offshore GmbH plant zur Anbindung von Offshore-Windparks der OWP-Cluster 11 bis 13 in der deutschen Nordsee an das Stromnetz die Verlegung von drei Kabelsystemen vom Gate N-III über die Insel Baltrum und durch das rückseitige Inselwatt zum Festland. Dies sind nach jetzigem Planungsstand die Systeme NOR-12-1, NOR-11-2 und NOR-13-1.

Im Rahmen des Genehmigungsverfahrens für Kabelverlegungen im Küstenmeer sind die Auswirkungen der Vorhaben auf Natur und Landschaft zu ermitteln, zu beschreiben und zu bewerten. Dabei sind verschiedene Rechtsregime und Belange zu berücksichtigen (u. a. Eingriffsregelung nach § 14 BNatSchG). Vorgaben zu den Umweltuntersuchungen im Küstenmeer sind durch den Niedersächsischen Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN) und die Nationalparkverwaltung "Niedersächsisches Wattenmeer" (NLPV) festgelegt (NLWKN & NLPV 2012). Die drei

Stand: 06.06.2023 Seite 2 von 51

Netzanbindungssysteme NOR-12-1, NOR-11-2 und NOR-13-1 verlaufen im Küstenmeer in Parallellage. Gemäß NLWKN & NLPV (2012) ist bei einer Parallellage ein Kabelkorridor auszuweisen, in dem die Kabeltrassen gemeinsam zu untersuchen sind. Der vorliegende Untersuchungsbericht bildet somit die fachliche Grundlage für das Vorhaben "NOR-12-1, NOR-11-2 und NOR-13-1".

Mit der Durchführung der Untersuchungen im Bereich des geplanten Kabelkorridors im Küstenmeer wurde die Gutachtergemeinschaft Benthos beauftragt. Innerhalb der Gutachtergemeinschaft haben die BioConsult GmbH und Co. KG und die IBL Umweltplanung GmbH Untersuchungen der Trassen auf Grundlage eines mit den beiden Fachbehörden NLWKN und NLPV abgestimmten Untersuchungskonzepts durchgeführt. Die von IBL durchgeführten Untersuchungen umfassten die Watten (Eulitoral) im Abschnitt der Seetrassen südlich Baltrum (bis zur Anlandung), während das Untersuchungsgebiet von BioConsult den sublitoralen Abschnitt nördlich Baltrum bis zur 12 sm-Grenze bildete. Dieser Bericht beschreibt die Ergebnisse im eulitoralen Untersuchungsgebiet.

Für die naturschutzfachlichen Unterlagen des Genehmigungsantrages stehen damit u. a. Aussagen zum Bestand und zur Bedeutung der Schutzgüter Makrozoobenthos, Sedimente und Biotoptypen zur Verfügung. Diese bilden eine Grundlage für die umweltfachlichen Auswirkungsprognosen.

Zur Erfassung des Makrozoobenthos wurden gemäß NLWKN & NLPV (2012) im Dornumer Watt drei Quertransekte à vier Stationen, ein Quertransekt à fünf Stationen und drei Zwischenstationen beprobt. Desweiteren wurden im Baltrumer Rückseitenwatt ein Quertransekt à vier Stationen und zwei Zwischenstationen beprobt. Zusätzlich erfolgten Erfassungen mittels Zählrahmen zur Verifizierung der im Jahr 2022 ermittelten Biotoptypen. Insgesamt wurden zwischen Dornumersiel und Baltrum 26 Stationen (à 6 Parallelproben) mittels Stechrohr erfasst und 25 Stationen (davon fünf zusätzliche Zählrahmen) mit Zählrahmen beprobt (Abbildung 1).

Allen Untersuchungen liegt eine Genehmigung der Nationalparkverwaltung Niedersächsisches Wattenmeer nach § 21 Abs 1 NWattNPG vom 23.08.2019 (Az.01.1-22242/23-1.7.5 (2-7)) zugrunde.

Stand: 06.06.2023 Seite 3 von 51

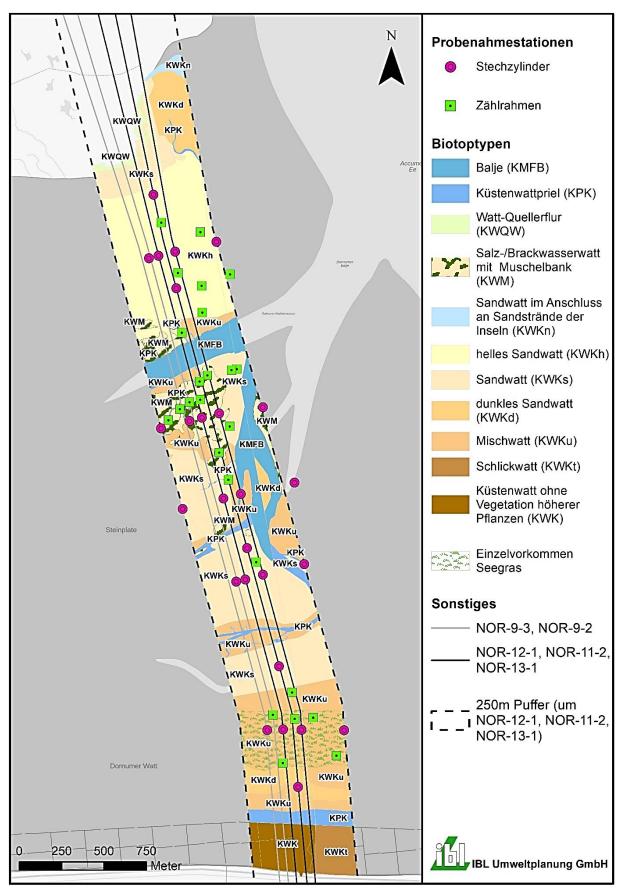


Abbildung 1: Übersicht über Trassenverlauf und Lage der Probenahme-Stationen

Erläuterung: Biotoptypen-Code nach (Drachenfels 2021). Stationsnummern siehe Abbildung 2

Stand: 06.06.2023 Seite 4 von 51

3 Material und Methoden

Im Bereich der geplanten Trassen "NOR-12-1, NOR-11-2 und NOR-13-1" wurden bei der aktualisierten Biotoptypenkartierung im Herbst 2022 Sandwatt (hell und dunkel), Mischwatt und Muschelbänke festgestellt. Diese waren nach den Vorgaben des NLWKN und der NLPV (2012) zu untersuchen.

3.1 Beprobung des Makrozoobenthos mittels Stechrohr

Insgesamt wurden zwischen Baltrum und Dornumersiel 26 Stationen beprobt (Abbildung 2 und Tabelle 2). Die Beprobung des Makrozoobenthos erfolgte mit einem Stechrohr (ø 15,2 cm, Fläche: 181,5 cm²) mit einer Eindringtiefe von 30 cm. An jeder Station wurden sechs Parallelproben genommen, d. h. insgesamt wurden 156 Proben dem Watt entommen (Tabelle 4). Alle sechs Parallelen wurden jeweils in einem Bereich von 1 m² genommen. Der Inhalt der Stechrohre wurde mittels eines Siebes mit der Maschenweite 1 mm vor Ort gesiebt. Im Anschluss wurden die Siebrückstände in 4%igem Formol und Seewasser fixiert. Im Labor erfolgte die weitere Sortierung und taxonomische Bearbeitung der Proben mit der abschließenden Bestimmung des Feucht- und Trockengewichtes. Aufgrund der Vergleichbarkeit mit der bisher in der Umgebung der Kabelsysteme "NOR-9-3 und NOR-9-2" (2021) durchgeführten Erfassung, wurde bei der Beschreibung der Ergebnisse in vorliegender Untersuchung das Augenmerk auf das Feuchtgewicht gelegt.

Tabelle 2: Aufteilung der Probennahme-Stationen auf die drei Watt-Typen im Bereich der geplanten Trassen

Biotoptyp	Kürzel (Drachenfels 2021)	Stationen Dornumer Watt "Steinplate"	Stationen Baltrumer Rückseitenwatt
Helles Sandwatt	KWKh	TS2_1 - TS2_4, TS3_1 - TS3_4	TS5_1 - TS5_4, ZS4, ZS5
Dunkles Sandwatt	KWKd	ZS2, ZS3	-
Mischwatt	KWKu	TS1_1 - TS1_4, ZS1	-
Muschelbank	KWM	TS4_1 - TS4_5	-

Erläuterung:

TS = Transekt-Station, ZS = Zwischen-Station

3.2 Beprobung des Sediments

Zur Bestimmung der Sedimenteigenschaften wurde an jeder Stechzylinderprobestation eine Sedimentansprache mittels Fingerprobe gemäß NLWKN & NLPV (2012) durchgeführt. Zusätzlich wurden auf der jeweils mittleren Station eines Quertransekts (TS) und an den Zwischenstationen (ZS) (Tabelle 4 und Abbildung 18) jeweils ca. 100 ml gestörtes Probenmaterial entnommen, ins Labor transportiert und dort bis zur Analyse eingefroren. Die Probennahmen erfolgten gemäß den Vorgaben des NLWKN & NLPV (2012), die Analyse der Proben im Labor nach DIN 18 123 (1996). Die Kornfraktionen wurden gemäß der Klassifizierung von Figge (1981) ausgewertet, dargestellt in Tabelle 3. Die Bestimmung der Kornfraktion wurde mittels sechs Analysensieben mit Metalldrahtgewebe nach DIN 3310-1 durchgeführt. Die Ermittlung der Bodenart erfolgte nach der bodenkundlichen Kartieranleitung (AG-Boden 2005).

Die Koordinaten der Probenahme-Stationen des Makrozoobenthos und des Sediments werden in Tabelle 4 in der Projektion Dezimal WGS84 dargestellt.

Stand: 06.06.2023 Seite 5 von 51

Tabelle 3: Übersicht der Siebmaschenweiten und entsprechende Kornfraktion

Siebmaschenweite	Kornfraktion (Benennung nach Figge (1981)
<63 μm	Ton/Schluff (T/U)
63 – 125 μm	Feinstsand (ffS)
125 – 250 μm	Feinsand (fS)
250 – 500 μm	Mittelsand (mS)
500 – 1.000 μm	Grobsand 1 (gS1)
1.000 – 2.000 μm	Grobsand 2 (gS2)
>2.000 μm	Kies (G) bzw. Steine (X)

Siebmaschenweite entspricht DIN ISO 3310-1:2001-09.

Stand: 06.06.2023 Seite 6 von 51

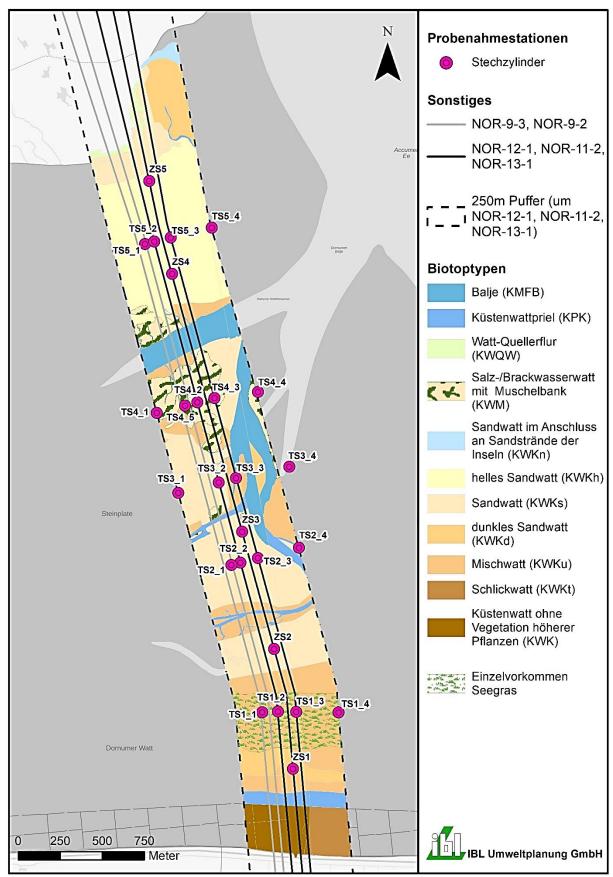


Abbildung 2: Übersicht über den geplanten Trassenverlauf und die Stationen für Benthosuntersuchungen (Stechrohr)

Stand: 06.06.2023 Seite 7 von 51

Tabelle 4: Koordinaten der Probennahme-Stationen (Sediment und Stechrohre)

	Koordinaten Dezimal WGS84		
Stationsnr.	Breite	Länge	
TS1_1	53,691112	7,441842	
TS1_2	53,691167	7,443261	
TS1_3	53,691167	7,444905	
TS1_4	53,691194	7,448706	
TS2_1	53,698940	7,438788	
TS2_2	53,699069	7,439597	
TS2_3	53,699337	7,441154	
TS2_4	53,699942	7,444814	
TS3_1	53,702728	7,433867	
TS3_2	53,703331	7,437482	
TS3_3	53,703582	7,439032	
TS3_4	53,704258	7,443797	
TS4_1	53,706973	7,431774	
TS4_2	53,707583	7,435395	
TS4_3	53,707833	7,436928	
TS4_4	53,708209	7,440835	
TS4_5	53,707393	7,434289	
TS5_1	53,715973	7,430369	
TS5_2	53,716116	7,431199	
TS5_3	53,716350	7,432682	
TS5_4	53,716927	7,436349	
ZS1	53,688128	7,444710	
ZS2	53,700728	7,439684	
ZS3	53,694503	7,442780	
ZS4	53,714414	7,432867	
ZS5	53,719341	7,430629	

Colorierte Stationsnr. = Sedimententnahme.

3.3 Wattcharakerisierung mittels Zählrahmen

Zur Abschätzung der Besiedlungsdichten makroskopisch sichtbarer Arten wurden im Watt zwischen Baltrum und Dornumersiel je abgegrenztem Biotoptyp (Sandwatt, Mischwatt und Muschelbank) sechs Zählrahmen (1 m²) zur Ermittlung der Besiedlungsdichten ausgezählt. Insgesamt wurden 25 Zählrahmen (ZR) ausgewertet, sieben davon sind als Zusatzrahmen zu betrachten (Abbildung 3). Die Zählrahmen sind in 5 x 5 Felder mit einer Kantenlänge von je 20 cm unterteilt. Alle Flächen wurden fotografiert und im Labor ausgezählt. Alle Dichten wurden pro Feld bzw. für den Gesamtrahmen in Anzahl Spuren/ Individuen protokolliert. Es konnten folgende Arten ausgezählt werden, bzw. der Bedeckungsgrad eingeschätzt werden:

- Gemeine Miesmuschel (Mytilus edulis),
- Gemeine Strandschnecke (Littorina littorea),
- Wattwurm (Arenicola marina).

Für die Arten/ Taxa Pazifische Auster (*Magallana gigas*), *Fucus* spp., Balaniden, *Ulva* spp. und Diatomeen wurde der prozentuale Bedeckungsdrad aufgenommen.

Die Koordinaten der Zählrahmen-Stationen sind in Tabelle 5 angegeben.

Stand: 06.06.2023 Seite 8 von 51

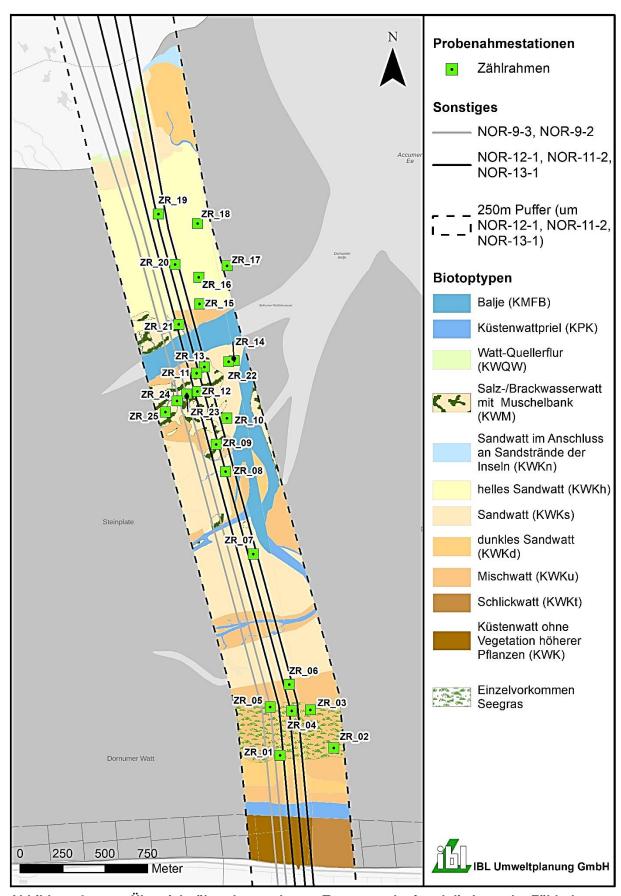


Abbildung 3: Übersicht über den geplanten Trassenverlauf und die Lage der Zählrahmen

Stand: 06.06.2023 Seite 9 von 51

Tabelle 5: Koordinaten der Zählrahmen-Stationen (Dezimal WGS84)

	Koordinaten Dezimal WGS84		
Stationsnr.	Breite	Länge	
ZR_01	53,689386	7,443294	
ZR_02	53,689837	7,448074	
ZR_03	53,691819	7,445909	
ZR_04	53,691745	7,444250	
ZR_05	53,691929	7,442317	
ZR_06	53,693136	7,443974	
ZR_07	53,700003	7,440519	
ZR_08	53,704330	7,437875	
ZR_09	53,705756	7,437002	
ZR_10	53,707155	7,437895	
ZR_11	53,709498	7,435115	
ZR_12	53,708538	7,435211	
ZR_13	53,709835	7,435793	
ZR_14	53,710199	7,438417	
ZR_15	53,713165	7,435226	
ZR_16	53,714575	7,435102	
ZR_17	53,715211	7,437621	
ZR_18	53,717420	7,434891	
ZR_19	53,717877	7,431384	
ZR_20	53,715224	7,432973	
ZR_21	53,712064	7,433425	
ZR_22	53,710144	7,437939	
ZR_23	53,708394	7,434267	
ZR_24	53,708012	7,433417	
ZR_25	53,707409	7,432404	

3.4 Auswertung

Zur Beschreibung des Makrozoobenthos (Stechrohr-Beprobung an 26 Stationen) wurden das Artenspektrum, die Gesamtartenzahl und -individuendichten sowie die Biomasse bestimmt. Der Diversitäts-Index H' wurde nach Shannon & Wiener (1949) berechnet.

Die Gemeinschaftsanalysen sowie die Analyse der Sedimente wurden anhand multivariater Auswertungsmethoden mittels der Software Primer 6.0 (Version 6.1.6) durchgeführt und graphisch veranschaulicht (Cluster, MDS-Plot, ANOSIM und SIMPER). Zur Anwendung der Gemeinschaftsanalyse erfolgte eine Transformation der Rohdaten (vierte Wurzel). Als Ähnlichkeitsmaß diente die Bray-Curtis Similarität. Das Gütemaß für die MDS Darstellung ist der sogenannte Stress-Wert. Ein Stress < 0,05 zeigt an, dass eine sehr gute Ordination der Daten ohne Möglichkeit der Fehlinterpretation vorliegt. Ein Stress < 0,1 weist auf eine gute Ordination mit einer geringen Aussicht auf Fehlinterpretationen hin. Ein Stress < 0,2 indiziert, dass die Ordination eine potenziell nützliche Darstellung ist, wobei nicht zu viel Vertrauen in die Details gelegt werden sollte. Bei einem Stress > 0,3 ist von einer eher zufälligen Gruppierung der Punkte in der Ordination auszugehen.

Unterschiede zwischen den durch die Clusterbildung ermittelten Gruppen wurde anhand einer ANOSIM (Analysis of Similarities) ermittelt. Das Verfahren ANOSIM testet die Nullhypothese, dass kein Unterschied zwischen definierten Gruppen besteht.

Stand: 06.06.2023 Seite 10 von 51

Ermittelt werden der p-Wert und der R-Wert, welche Aufschluss über die Unähnlichkeit der einzelnen Gruppen geben. Dabei gilt:

- R > 0,75: die Gruppen lassen sich klar voneinander trennen;
- R ~ 0,5: gute Trennbarkeit der Gruppen, jedoch mit einigen Übereinstimmungen;
- R < 0,25: die Gruppen trennen sich kaum.

4 Ergebnisse

Die Probennahmen erfolgten zwischen dem 19.10.2022 und dem 19.11.2022 an insgesamt fünf Tagen. Die Sonnenscheindauer betrug in diesem Zeitraum zwischen 0,0 und 7,9 Stunden pro Tag, die mittlere Tageslufttemperatur lag bei 5,0 bis 15,8 $^{\circ}$ Celsius (Quelle: Deutscher Wetterdienst). Die Probennahmen erfolgten von 3 – 4 Stunden vor Niedrigwasser bis 1 Stunde danach.

4.1 Makrozoobenthos (Stechrohr-Beprobung)

4.1.1 Artenspektrum

Insgesamt wurden entlang der Trassenverläufe 74 Makrozoobenthos-Taxa in den Stechrohrproben nachgewiesen, davon konnten 64 (Tabelle 6) auf Artniveau bestimmt werden. Nicht artbestimmte Taxa werden für die Bestimmung der Taxazahl dann gewertet, wenn keine weitere Art dieses Taxons bestimmt wurde. Annelida (Polychaeten) stellen mit 51,6 % (33 Arten, Abbildung 4) die Großgruppe mit den meisten Arten dar, gefolgt von Mollusca (21,9 %, 14 Arten) und Crustacea (18,8 %, 12 Arten). Es folgten die Cnidaria mit drei Arten, Bryozoa und Chaetognatha wurden mit je einer Art nachgewiesen.

Tabelle 6: Makrozoobenthos-Arten mit Zuordnung der Roten Liste-Kategorie

Art	Rote Liste-Kategorie	Art	Rote Liste-Kategorie
Annelida		Bryozoa	
Alitta succinea	D	Electra pilosa	*
Arenicola marina	*	Chaetognatha	
Capitella capitata	*	Sagitta bipunctata	k.A.
Chaetozone setosa	*	Cnidaria	
Eteone longa	*	Clytia hemisphaerica	D
Eumida sanguinea	*	Obelia dichotoma	D
Glycera alba	D	Sertularia cupressina	G
Hediste diversicolor	*	Crustacea	
Heteromastus filiformis	*	Austrominius modestus	k.A.
Lanice conchilega	* 80% Rückgang seit 1980 (Singer u. a. 2023)	Bathyporeia sarsi	*
Magelona filiformis	*	Carcinus maenas	*
Magelona johnstoni	*	Crangon crangon	*
Malmgrenia arenicolae	D	Cumopsis goodsir	3 (mäßig abnehmend)
Malmgrenia castanea	D	Gammarus locusta	V (mäßig abnehmend)
Microphthalmus aberrans	*	Gammarus oceanicus	*
Nephtys cirrosa	*	Hemigrapsus takanoi	k.A. (invasiv)
Nephtys hombergii	*	Melita palmata	V (mäßig abnehmend)

Stand: 06.06.2023 Seite 11 von 51

Art	Rote Liste-Kategorie	Art	Rote Liste-Kategorie
Orbinia sertulata	D	Pontocrates altamari- nus	*
Phyllodoce groenlandica	*	Proasellus coxalis	k.A. (invasiv)
Phyllodoce maculata	*	Urothoe poseidonis	*
Phyllodoce mucosa	*	Mollusca	
Phyllodoce rosea	*	Abra alba	*
Polydora ciliata	*	Cerastoderma edule	*
Polydora cornuta	*	Fabulina fabula	*
Pseudopolydora pulchra	*	Kurtiella bidentata	*
Pygospio elegans	*	Lepidochitona cinerea	3 (mäßig abnehmend)
Scoloplos armiger agg.	*	Macoma balthica	*
Sigalion mathildae	3 (mäßig abnehmend)	Macomangulus tenuis	V
Spio goniocephala	*	Magallana gigas	k.A. (invasiv)
Spio martinensis	*	Mulinia lateralis	k.A. (Erstnachweis Balt- rum, invasiv)
Spio symphyta	D	Mya arenaria	* 80% Rückgang seit 1980 (Singer u. a. 2023)
Spiophanes bombyx	*	Mytilus edulis	*
Tharyx killariensis	D	Peringia ulvae	* 80% Rückgang seit 1980 (Singer u. a. 2023)
		Retusa obtusa	*
		Scrobicularia plana	1 (mittel- und langfristiger abnehmend)
TAXA		TAXA	
Annelida		Crustacea	
Harmothoe spp.		Gammarus spp.juv.	
Microphthalmus spp.		Mollusca	
Nephtys spp.juv.		Ensis spp.juv.	
Nereis spp.juv.		Nemertea	
Oligochaeta sum.		Nemertea sum.	
Phyllodoce spp.juv.			
Polydora spp.juv.			

Rote Liste-Kategorie: D= Daten unzureichend, *=ungefährdet, G=potenziell gefährdet, 3=gefährdet, 2=stark gefährdet, 1=vom Aussterben bedroht, R=extrem selten, Arten mit geographischer Restriktion, V=Vorwarnliste (Rachor et al. 2013), k.A.=keine Angabe).

Stand: 06.06.2023 Seite 12 von 51

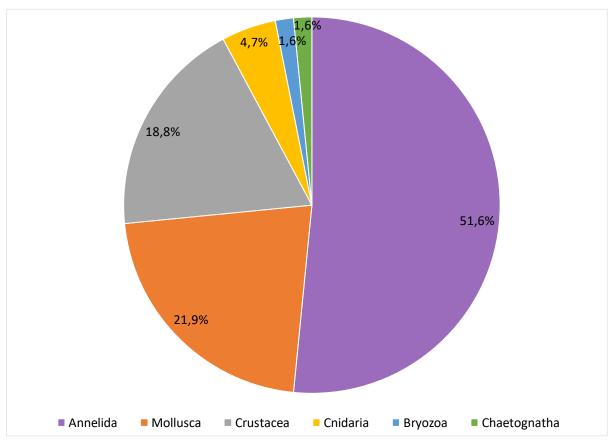


Abbildung 4: Prozentuale Verteilung der Arten pro taxonomischer Großgruppe

4.1.2 Rote Liste Arten und gefährdete Arten

Es wurden fünf Arten der Roten Liste (Rachor u. a. 2013) festgestellt, weitere drei Arten befinden sich auf der Vorwarnliste (Tabelle 6). Nach den jüngsten Analysen von Singer et al. (2023) weisen weitere drei Arten langfristige Abnahmen seit 1980 auf, die mit Raten von 80 % beziffert werden.

Es sind somit 17 % (= 11 Arten) der nachgewiesenen Arten als unmittelbar gefährdet einzustufen, im Untersuchungsgebiet entspräche das statistisch gesehen jeder sechsten festgestellten Art.

Scrobicularia plana (Große Pfeffermuschel) ist der Kategorie 1 zuzuordnen (vom Aussterben bedroht).

Sigalion mathildae, Cumopsis goodsir, Lepidochitona cinerea zählen zur Kategorie 3 (gefährdet) und Sertularia cupressina ist als potenziell gefährdet eingestuft. Gammarus locusta, Melita palmata und Macomangulus tenuis befinden sich auf der Vornwarnliste.

Nach jüngsten vergleichenden Untersuchungen, bei denen Datensätze von 1980 bis 2018 herangezogen wurden (Singer u. a. 2023), zeigten sich bei *Lanice conchilega* (Bäumchen-Röhrenwurm), *Mya arenaria* (Klaffmuschel) und *Peringia ulvae* (Gemeine Wattschnecke) Rückgänge bis zu 80 Prozent.

Nach Rachor u. a. (2013) sind die genannten Arten als mäßig bis sehr häufig sowie als weit verbreitet ausgewiesen.

Stand: 06.06.2023 Seite 13 von 51

Tabelle 7 Nachweise der unmittelbar gefährdeten Arten im Untersuchungsgebiet

Art	Station	Anzahl [n]	Biotoptyp / Lokation	Dominierende Korngröße	Ton / Schluff - Anteil
Scrobicularia plana	TS1-1	7			
	TS1-2	8	KWKu Mischwatt	Feinstsand (ffS)	18 %
	TS1-3	8	Steinplate Süd	i ellisisaliu (iio)	10 /0
	TS1-4	17			
	TS4-1	3	LCIA/NA NA la . lla l		
	TS4-2	5	KWM Muschelbank Steinplate Nord	Feinstsand (ffS)	8 %
	TS4-5	3	Otompiate Nord		
	ZS1	4	KWKu Mischwatt Steinplate Süd	Feinstsand (ffS)	22 %
Sigalion mathildae	TS4-1	1	KWM Muschelbank Steinplate Nord	Feinstsand (ffS)	8 %
Cumopsis goodsir	TS5-2	1	KWKh helles Sandwatt Rückseitenwatt Baltrum	Feinsand (fS)	2,5 %
Lepidochitona cinerea	TS1-1	1	KWKu Mischwatt Steinplate Süd	Feinstsand (ffS)	18 %
Sertularia cupressina	TS4-4	+	KWM Muschelbank Steinplate Nord	Feinstsand (ffS)	8 %
Gammarus locusta	TS4-1	2	KWM Muschelbank		
	TS4-2	1	Steinplate Nord	Feinstsand (ffS) 8	8 %
	TS4-5	1	Ctompiato rtoru		
Melita palmata	TS4-1	14	KWM Muschelbank	Feinstsand (ffS)	8 %
	TS4-5	6	Steinplate Nord	i cilisisaliu (IIS)	J 70
Macomangulus tenuis	TS-3-2	1	KMKh helles Sandwatt Steinplate Nord	Feinsand (fS)	2 %
	TS4-4	1	KWM Muschelbank Steinplate Nord	Feinstsand (ffS)	8 %
Lanice conchilega	TS3-1	14	KWKh helles Sandwatt Steinplate Nord	Feinsand (fS)	2 %
	TS4-2	4	KWM Muschelbank	Feinstsand (ffS)	
	TS4-3	4	Steinplate Nord		8 %
	TS4-5	10	Otompiate Nord		
	TS5-2	2	KWKh helles Sandwatt Rückseitenwatt Baltrum	Feinsand (fS)	2,5 %
Mya arenaria	TS1-2	3	KWKu Mischwatt	Feinstsand (ffS)	18 %
	TS1-3	1	Steinplate Süd	i ciriotodila (ilo)	10 /0
	TS2-2	1	KMKh helles Sandwatt Steinplate Mitte	Feinstsand (ffS)	3 %
	TS4-1	1	KWM Muschelbank	Feinstsand (ffS)	8 %
	TS4-5	1	Steinplate Nord	i ellisisaliu (IIS)	U /0
	ZS1	1	KWKu Mischwatt Steinplate Süd	Feinstsand (ffS)	22 %
Peringia ulvae	TS1-1	88			
	TS1-2	136	KWKu Mischwatt	Feinstsand (ffS)	18 %
	TS1-3	38	Steinplate Süd	reinstsand (πS) 18	10 70
	TS1-4	21			
	ZS1	83	KWKu Mischwatt Steinplate Süd	Feinstsand (ffS)	22 %
	ZS4	2	KWKh helles Sandwatt	Feinsand (fS)	4 %
	ZS5	252	Rückseitenwatt Baltrum	Feinsand (fS)	2,5 %

bei koloniebildenden Arten der Großgruppen Bryozoa und Cnidaria wurden die Einzeltiere [n] nicht ausgezählt, sondern ausschließlich als "nachgewiesen"(= +) aufgefüht.

Stand: 06.06.2023 Seite 14 von 51

Die sensitivsten Biotoptypen im Untersuchungsgebiet bezüglich der gefährdeten Arten ist die Muschelbank (Biotoptyp: KWM) im Norden und das Mischwatt (Biotoptyp: KWKu) im Süden der Steinplate. Innerhalb der Muschelbank konnten acht, im Mischwatt der südlichen Steinplate vier gefährdete Arten festgestellt werden. Beide Biotoptypen weisen dabei die höchsten Ton/Schluff-Werte auf, wobei es sich im Fall der Muschelbank vermutlich um biogenen "Schlick" handelt.

Durch die stark skulpturierte Oberfläche der Muschelbank mit ihren zahlreichen Hohlräumen, bietet dieser Biotoptyp eine große Oberfläche mit Versteckmöglichkeiten für vagile und epibiontisch lebende und gefährdete Arten wie *Gammarus locusta*, *Melita palmata*, *Sigalion mathildae* und *Sertularia cupressina*. Der Bäumchen-Röhrenwurm (*Lanice conchilega*) wurde innerhalb der Muschelbank ebenfalls am stetigsten nachgewiesen.

Scrobicularia plana (Große Pfeffermuschel)

Die Muschel lebt in weichen Böden bis zu einer Wassertiefe von 15 m und bevorzugt den Gezeitenbereich. Die Große Pfeffermuschel gehört mit einer Lebenserwartung von 16 bis 18 Jahren zu den langlebigen Arten im Bereich des deutschen Wattenmeeres (Willmann 1989). In den letzten Jahren ist es aufgrund des Verlustes an geeigneten Sedimenten zu einem Bestandsrückgang gekommen (Rachor u. a. 2013). Die Art ernährt sich als "Pipettierer", indem sie Nahrungspartikel gezielt mit ihren beiden Siphonen vom Boden aufnimmt.

Mya arenaria (Klaffmuschel)

Diese Art benötigt lagestabilen Boden, wobei sich Sedimentations- und Erosionsraten ausgleichen müssen. Adulte Tiere leben in Bodentiefen von bis zu 30 cm, nach Beendigung ihres Wachstums sind sie nicht mehr in der Lage ihre Position zu ändern. Das bedeutet, dass ausgespülte oder ausgegrabene adulte Tiere sich aus eigener Kraft nicht mehr eingraben können (Mertens & Schmidt 1950 S. 142–146; Reineck u. a. 1982 S. 145–172) und somit absterben. Die Klaffmuschel ist mehrjährig und erreicht ein ähnliches Alter wie *Scrobicularia plana*; sie zählt zu den Strudlern und ernährt sich von Plankton.

Sigalion mathildae (keine deutsche Bezeichnung)

Dieser Annelide zählt nicht zu den typischen "Watt"-Bewohnern. Gemäß Eintragungen WoRMS (https://www.marinespecies.org/imis.php?module=dataset&dasid=67) sind Nachweise aus dem Wattenmeer bislang nicht oder nur unvollständig dokumentiert. Vereinzelte Funde aus der Oosterschelde (Holtmann u. a. 1996) und vor Langeoog sowie Wangerooge (Hartmann-Schröder 1996) sind dagegen aufgeführt. Über die Biologie des Anneliden ist wenig bekannt, vermutlich handelt es sich um räuberisch lebende Arten, dies lässt der muskulöse, ausstülpbare Pharynx vermuten. Das festgestellte Einzeltier im Untersuchungsgebiet könnte durch den kurz vor der Probennahme herrschenden Sturm, am 16./ 17.11.2022, über das Seegat eingespült (Stecher 1999) worden sein. Der Fundort innerhalb der Muschelbank, nahe des Baltrumer Wattfahrwassers, legt diese Vermutung nahe.

Cumopsis goodsir (keine deutsche Bezeichnung)

Diese kleine Krebsart zählt zu den Kumazzeen (Ranzelkrebse) und zeichnet sich durch die Brutpflege ihrer Nachkommen aus. Die befruchteten Eier tragen die Weibchen zwei bis drei Monate lang in einer Bauchfalte (Marsupium) bis die Jungtiere fast vollständig ausgebildet schlüpfen. Es wird zwischen einer kurzlebigen Sommergeneration (fünf Monate) und einer langlebigen, zwölf Monate dauernden Wintergeneration unterschieden. Es finden über das Jahr verteilt zwei Brutperioden statt (Jones 1976). Ihre

Stand: 06.06.2023 Seite 15 von 51

Lebensweise und Biologie spricht für Standorttreue. Die Art nutzt die Kapazitäten ihres Lebensraumes bestmöglich aus, sie wird zu den "k-Strategen" gezählt und ist daher bezüglich Veränderungen ihres Lebensraumes weniger widerstandsfähig als opportunistische Arten, die in der Regel die "r-Strategie" (= random; Zufallsprinzip) als Lebensweise widerspiegeln.

Lepidochitona cinerea (Rändel/ Graue Käferschnecke)

Diese Art ist weit verbreitet und siedelt auf Hartsubstraten, wie z. B. Muschelbänken. Im Untersuchungsgebiet wurde sie auf dem Mischwatt erfasst. Es ist davon auszugehen, dass es sich bei diesem Fund um ein versprengtes Tier, das durch Starkwinde am 05./ 06.10.2022 und 16.10.2022 dorthin verschlagen wurde. Arten dieser Gruppe ernähren sich vorwiegend von Algen.

Lanice conchilega (Bäumchen-Röhrenwurm)

Dieser Annelide ("Polychaet"; Vielborster) ist in Bezug auf seine Ernährungsweise und Biologie vielseitig. Er ist einjährig und kann im Sublitoral binnen kürzester Zeit sehr dichte Bestände ausbilden. Auf dem Eulitoral ("Watt") baut er seine Röhren in höher gelegene Bereiche, zwischen der Arenicola- und Mytilus-Zone (Reineck u. a. 1982 S. 145–172). Hierbei kann es zur Ausbildung von dichten Beständen kommen, die als "Rasen" bezeichnet werden. Seine Empfindlichkeit gegenüber kurzfristigen Ereignissen, wie wechselnden Strömungsverhältnissen, einhergehend mit der Versorgung an Nahrungspartikeln, ist gering und Individuen dieser Art reagieren schnell auf diese Veränderungen (Thorson 1946; Ziegelmeier 1952). So erfolgt ein postlarvaler Standortwechsel (nach Übergang der pelagischen Larve zum Bodenleben) innerhalb eines Jahres regelmäßig bei wechselnden Strömungs- und Nahrungsbedingungen. Auch adulte Tiere, die in einer Röhre wohnen, wechseln je nach Strömungsverhältnissen ihre Ernährungsweise zwischen "weidend" oder "pipettierend". Auf strömungsdominanten Wattbereichen bauen sie das obere Ende ihrer Röhre bis zu 3 cm über dem Boden und schließen sie mit einer senkrecht zur Strömung weitverzweigten "Bäumchen Struktur", bestehend aus zahlreichen fransenähnlichen "Ästen", ab. An dieser so als "Reuse" fungierenden Struktur sammeln sich Nahrungspartikel, die das Tier dann mit den Mundwerkzeugen "weidend" frisst (Ziegelmeier 1952). Bleibt die Strömung dagegen aus, baut das Tier seine "Reuse" zurück, das Röhrenende wird auf Bodenniveau abgetragen und er pipettiert mit den beiden Tentakeln die Umgebung nach abgelagerten Nahrungspartikeln ab. Zerstörte Röhren werden umgehend erneuert, sodass verzweigte Röhren entstehen können. Da diese Art als kälteempfindlich eingestuft wird, ist die Aufrechterhaltung der eulitoralen Bestände stark von dem Eintrag der Larven aus sublitoralen Populationen abhängig. Als Folge davon können starke Schwankungen in den eulitoralen Bestandsdichten auftreten (Stecher 1999).

Peringia ulvae (Gemeine Wattschnecke)

Diese Art gilt als kälteliebend und wird selten über ein Jahr alt. Sie ernährt sich von Diatomeen (Kieselalgen), Cyanobakterien (Blaugrünalgen) und abgestorbenem Material (Detritus), die sie vom Boden abweidet. Durch ihren Schleim verklebt sie beim Kriechen einzelne Bodenpartikel miteinander, sodass diese schwerer vom Ebbstrom erodiert werden können. Ähnlich wie Diatomeen und Cyanobakterien trägt *Peringia ulvae* somit in geringem Umfang zur Lagestabilität der obersten Bodenschichten bei. Ein Ortswechsel erfolgt während des Flutstroms, indem sie sich mit ihrem Fuß nach oben richtet und sich mit Hilfe ihres Schleims an die Wasseroberfläche anheftet.

Stand: 06.06.2023 Seite 16 von 51

Gammarus locusta (Meer-/ Tang-Flohkrebs)

Dieser Flohkrebs ist wie *Cumopsis goodsir* eine brutpflegende Art und wird auch zu den "k-Strategen" gezählt. Demzufolge ist seine Lebensstrategie sehr auf seinen Lebensraum abgestimmt und reagiert sehr sensibel auf dessen Verlust. Sein bevorzugtes Biotop sind Hartsubstrate mit ausreichend Versteckmöglichkeiten mit ausgeprägtem Algenbewuchs, wie hier der Fundort in einer Muschelbank. Er gilt im Gegensatz zum Ranzelkrebs als guter Schwimmer, der sich von Algen, aber auch räuberisch ernähren kann.

Melita palmata (keine deutsche Bezeichnung)

Über die Lebensweise dieser Art ist in der Nordseeregion wenig bekannt. Sie zählt zu den "k-Strategen". Obenat et al. (2006) wiesen in einer Lagune in Argentinien (Mar Chiquita) starke Bestandseinbrüche nach starken Regenfällen (= Aussüßen) nach. Nach Lincoln (1979) soll sie dagegen eine hohe Toleranz gegenüber Salinitätsschwankungen besitzen. Obenat et al. (2006) beobachteten, dass die Reproduktion bei Wassertemperaturen von 18 °C begann, was auf eine wärmeliebende Art schließen lässt.

Macomangulus tenuis (Platte Tellmuschel)

Diese Art gräbt sich bis zu 13 cm tief in den Boden ein, sie ist mehrjährig und tritt im Eulitoral ausschließlich im unteren Bereich auf. Sie zählt nicht zum typischen Artinventar des Watts. Es ist davon auszugehen, dass die im Untersuchungsgebiet erfassten Exemplare durch die vorangegangenen Starkwindphasen und durch Sturm (16.11.2022 und 17.11.2022) über das Seegat eingespült wurden (Stecher 1999). Die Fundorte nahe des Baltrumer Wattfahrwassers legen diese Vermutung nahe. Als Pipettierer ernährt sich diese Art ähnlich wie *Scrobicularia plana*.

4.1.3 Erstnachweis einer als potenziell invasiv geltenden Art im Untersuchungsgebiet

Neben den bereits seit Jahrzehnten etablierten Neobiota, wie die Klaffmuschel (*Mya arenaria*), die Pazifische Auster (*Magallana gigas*), die Wasserassel (*Proasellus coxalis*) und die Pinsel-Felsenkrabbe (*Hemigrapsus takanoi*) (LLUR 2014), erfolgte während der Benthoserfassung 2022 im Mischwatt auf der südlichen Steinplate (TS1_2) ein Erstnachweis der als potenziell invasiv geltenden Muschel *Mulinia lateralis* mit zwei Exemplaren. Die Art, die seit August 2017 an der deutsch - niederländischen Küste bekannt ist (Klunder u. a. 2019), hat ihren Ursprungsort an der Ostküste von Nordamerika.

Es handelte sich bei den Funden um 23 – 25 mm lange Tiere, die damit deutlich größer waren als die Erstfunde im Ems-Dollard von 2017, die seinerzeit eine Länge von 13 – 17 mm besaßen. Die auf der Steinplate erfassten Muscheln sind somit als adult einzustufen. Vergesellschaftet waren sie ebenfalls mit den typischen Mischwattbewohnern wie den Anneliden *Heteromastus filiformis, Alitta succinea, Pygospio elegans, Tharyx killariensis*, der Wattschnecke *Peringia ulvae* sowie der Herzmuschel *Cerastoderma edule* und der Baltischen Tellmuschel *Macoma balthica* (Klunder u. a. 2019).

Der Filtrierer *Mulinia lateralis* gilt als opportunistische Art (= r-Stratege), der bereits nach zwei Monaten die Geschlechtsreife erreicht und daraufhin bis zu zwei Millionen Eier produzieren kann. Die Muschel gilt gegenüber Salinitätsschwankungen und Sauerstoffzehrung als resistent. Ihre Lebenserwartung wird mit zwei Jahren angegeben. Nach vorliegenden Studien aus dem niederländischen Langzeitprogramm SIBES (Synoptic Intertidal Benthisch Surveys), erfolgt ein Larvenfall ab Mai/ Juni. Eine Aussage, ob eine mehrmalige Reproduktion über ein Jahr erfolgt, ist aufgrund der defizitären Datengrundlage und des Zeitintervalls der Erhebungen bislang nicht möglich.

Stand: 06.06.2023 Seite 17 von 51

Ihr Potential als invasive Art, einheimische und etablierte Arten zu verdrängen, wird aufgrund ihrer dargelegten Biologie und Ökologie als sehr hoch eingestuft. Vor allem nach signifikanten Störungen eines sensitiven Lebensraums vor dem Larvenfall von *Mulinia lateralis* ist diese Gefahr als hoch zu bewerten. Als wesentlicher limitierender Faktor für ihre Ausbreitung wird jedoch der Fraßdruck von Fressfeinden in Betracht gezogen. So korrelieren bislang fehlende Fressfeinde mit erfolgreichen Ausbreitungen von *Mulinia lateralis*. Ein möglicher Fressfeind ist beispielsweise der mit ihr vergesellschaftete Annelide *Alitta succinea*.

Abbildung 5: Mulinia lateralis rechte Seite, Fundort "Steinplate" am 20.10.2022

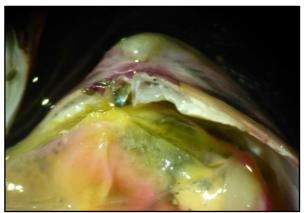
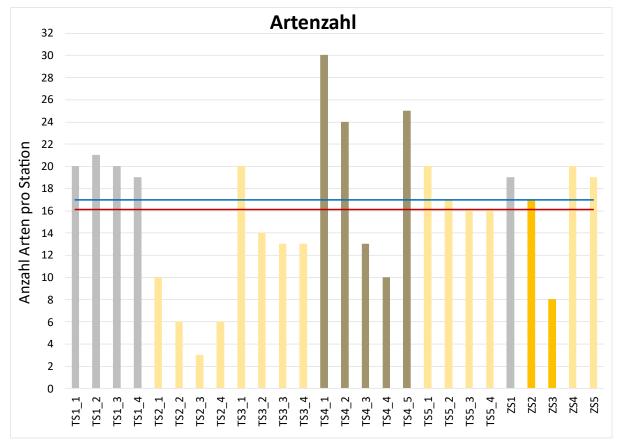


Abbildung 6: *Mulinia lateralis,* links: Blick in die linke geöffnete Klappe, rechts: Blick in die rechte Klappe, Fundort "Steinplate" am 20.10.2022

4.1.4 Gesamtartenzahl, -individuendichte und -biomasse

Artenzahl


Die mittlere Artenzahl im gesamten Untersuchungsgebiet liegt bei $16,1\pm6,4$ Arten pro Station (Median 17 Arten). Die Station TS4_1 (Biotoptyp: KWM) weist mit 30 Arten die höchste Artenzahl auf, während auf der Station TS2_3 (Biotoptyp: KWKh) die Artenzahl am geringsten ist und mit drei Arten deutlich unter dem Mittelwert liegt (Abbildung 7). Im Mischwatt und der Muschelbank liegen die mittleren Artenzahlen über dem Durchschnitt des Gesamtgebietes, im hellen und dunklen Sandwatt liegt die mittlere Artenzahl unter dem Durchschnitt, wobei das dunkle Sandwatt im Mittel die geringsten Artenzahlen aufweist (Tabelle 8).

Stand: 06.06.2023 Seite 18 von 51

Tabelle 8: Mittlere Artenzahlen pro Stationen in den Biotoptypen

Artenzahl	Dunkles Sandwatt	Mischwatt	Helles Sandwatt	Muschelbank
Mittelwert	12,5	19,8	13,8	20,4
Median	12,5	20,0	15,0	24,0
Standardabweichung	6,4	0,8	5,7	8,5

Stationen dunkles Sandwatt: ZS2, ZS3, Mischwatt: TS1_1-TS1_4, ZS1, helles Sandwatt: TS2_1-TS2_4, TS3_1-TS3_4, TS5_1-TS5_4, ZS4, ZS5, Muschelbank: TS4_1-TS4_5.

Abbildung 7: Anzahl Arten pro Station

Erläuterung:

Die rote Linie stellt den Mittelwert, die blaue Linie den Median dar. Stationen dunkles Sandwatt: ZS3, Mischwatt: TS1_1-TS1_4, ZS1, helles Sandwatt: TS3_1-TS3_4, TS5_1-TS5_4, ZS4, ZS5, Muschelbank: TS4_1-TS4_5.

Individuendichte (Abundanz; Individuen/m²)

Die mittlere Individuendichte des Makrozoobenthos im Bereich der Kabeltrassen liegt bei $2.991,0\pm2.718,8$ Ind./m² (Median: 3.299,5 Ind./m²). Zwischen den Stationen gibt es große Unterschiede in der Individuendichte (Abbildung 8). Auf der Station TS4_2 ist die Abundanz am höchsten (10.164 Ind./m²) und auf der Station TS2_4 mit 77 Ind./m² am geringsten.

Insgesamt machen Annelida mit 53,2 % (im Mittel 1.592,5 Ind./m²) den größten Anteil an Individuen aus, gefolgt von Crustacea (29,0 %, 868,2 Ind./m²) und Mollusca (17,6 %, 525,7 Ind./m²). Den geringsten Anteil machen mit 0,1 % die Nemertea (4,2 Ind./m²) aus. Bei Chaetognatha handelt es sich um einen Einzelfund, was einem Anteil von 0,01 % (0,35 Ind./m²) entspricht.

Stand: 06.06.2023 Seite 19 von 51

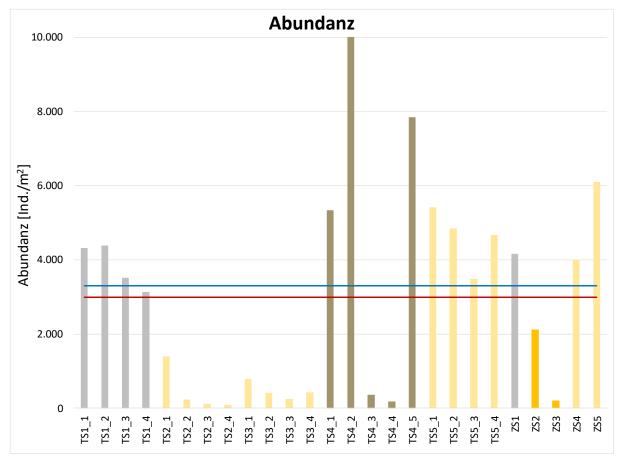

Die mittlere Individuendichte ist in der Muschelbank am höchsten (Tabelle 9), im dunklen Sandwatt ist sie am geringsten und liegt deutlich unter dem Mittelwert für das Gesamtgebiet. Die Abundanzen liegen dort zwischen 201 Ind/m² (ZS3) und 6.096 Ind./m² (ZS5).

Tabelle 9: Mittlere Abundanzen (Ind./m²) in den Biotoptypen

Abundanz	Dunkles Sandwatt	Mischwatt	Helles Sandwatt	Muschelbank
Mittelwert	1.156,0	3.893,4	2.294,9	4.771,8
Median	1.156,0	4.149,0	1.083,5	5.325,0
Standardabweichung	1.350,6	550,6	2.301,6	4.456,7

Erläuterung:

Stationen dunkles Sandwatt: ZS2, ZS3, Mischwatt: TS1_1-TS1_4, ZS1, helles Sandwatt: TS2_1-TS2_4, TS3_1-TS3_4, TS5_1-TS5_4, ZS4, ZS5, Muschelbank: TS4_1-TS4_5.

Abbildung 8: Anzahl Individuen pro m² pro Station

Erläuterung:

Die rote Linie stellt den Mittelwert, die blaue Linie den Median dar. Stationen dunkles Sandwatt: ZS2, ZS3, Mischwatt: TS1_1-TS1_4, ZS1, helles Sandwatt: TS2_1-TS2_4, TS3_1-TS3_4, TS5_1-TS5_4, ZS4, ZS5, Muschelbank: TS4_1-TS4_5.

Biomasse

Der Mittelwert der Biomasse im Untersuchungsgebiet liegt bei 708,9 ± 900,6 g Feuchtgewicht/m² (Median: 370,3 g Feuchtgewicht/m²). Zwischen den Stationen bestehen erhebliche Unterschiede: Auf Station TS4_2 wurde mit 3.693,7 g Feuchtgewicht/m² die höchste Biomasse festgestellt (Abbildung 9), während die Biomasse auf der Station ZS3 am geringsten war (1,1 g Feuchtgewicht/m²). Diese Variabilität ensteht vor allem durch die hohen Dichten von *Magallana gigas* und *Mytilus edulis* auf den Stationen in der Muschelbank. Insgesamt machen Mollusca mit 97,9 % den höchsten Anteil an der Biomasse aus, gefolgt von Annelida mit 1,9 % und Crustacea mit 0,2 %. Die Cnidaria machen mit 0,01 % nur einen

Stand: 06.06.2023 Seite 20 von 51

geringen Anteil aus, gefolgt von Nemertea mit 0,004 %. Die Bryozoa und Chaetognatha machen in Bezug auf die Biomasse keinen erheblichen Anteil an der Gesamtbiomasse aus (< 0,00001 %).

Das Feuchtgewicht in den drei Biotoptypen ist in Tabelle 10 dargestellt.

Tabelle 10: Mittlere Biomasse (g Feuchtgewicht/m²) in den Biotoptypen

Feuchtgewicht (g/m²)	Dunkles Sandwatt	Mischwatt	Helles Sandwatt	Muschelbank
Mittelwert	445,0	1.117,6	207,7	1.809,3
Median	445,0	1.116,5	180,0	2.155,4
Standardabweichung	627,8	214,1	194,3	1.471,5

Erläuterung:

Stationen dunkles Sandwatt: ZS2, ZS3, Mischwatt: TS1_1-TS1_4, ZS1, helles Sandwatt: TS2_1-TS2_4, TS3_1-TS3_4, TS5_1-TS5_4, ZS4, ZS5, Muschelbank: TS4_1-TS4_5.

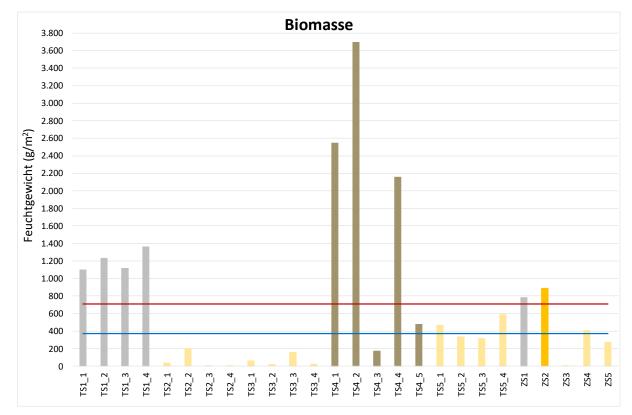


Abbildung 9: Biomasse (Feuchtgewicht g/m²) pro Station

Erläuterung:

Die rote Linie stellt den Mittelwert dar, die blaue Linie den Median dar. Stationen dunkles Sandwatt: ZS2, ZS3, Mischwatt: TS1_1-TS1_4, ZS1, helles Sandwatt: TS2_1-TS2_4, TS3_1-TS3_4, TS5_1-TS5_4, ZS4, ZS5, Muschelbank: TS4_1-TS4_5.

Stand: 06.06.2023 Seite 21 von 51

4.1.5 Abundanz, Stetigkeit und Biomasse

Tabelle 11 zeigt alle Arten sortiert nach Abundanz und Stetigkeit. Die Arten mit der höchsten Abundanz sind *Urothoe poseidonis* (Crustacea) und *Heteromastus filiformis* (Annelida). Oligochaeta und *Scoloplos armiger* (Annelida) kommen ebenfalls in hohen Abundanzen vor. Die höchste Stetigkeit weist mit 56,8 % jedoch *Scoloplos armiger* agg. (Annelida) auf (88 Proben mit Nachweis). Die zwei Mollusca *Cerastoderma edule* und *Macoma balthica* sowie die Annelida *Heteromastus filiformis* weisen Stetigkeiten von über 40 % auf. *Pygospio elegans* (Annelida) und *Urothoe poseidonis* (Crustacea) folgen mit Stetigkeiten von 39,4 % bzw. 37,4 % kurz dahinter.

Geringe Stetigkeiten (eine Probe mit Nachweis) liegen bei neun Arten der Annelida (*Harmothoe* spp., *Malmgrenia castanea, Microphthalmus aberrans, Microphthalmus spp., Orbinia sertulata, Phyllodoce maculata, Pseudopolydora pulchra, Sigalion mathildae, Spiophanes bombyx*), drei Crustacea (*Cumopsis goodsir, Gammarus oceanicus, Pontocrates altamarinus*), zwei Mollusca (*Abra alba, Lepidochitona cinerea*), sowie bei *Sagitta bipunctata* (Chaetognatha) und *Sertularia cupressina* (Cnidaria) vor.

In Tabelle 12 werden die Arten sortiert nach Biomasse (g) aufgelistet. Es zeigt sich, dass *Magallana gigas* (Mollusca) mit 5.903,73 g den größten Anteil der Gesamtbiomasse ausmacht. Der zweithöchste Anteil an der Biomasse macht *Mytilus edulis* (Mollusca) mit 1.590,94 g aus. *Cerastoderma edule* (Mollusca) mit 745,75 g und *Scrobicularia plana* (Mollusca) mit 125,68 g liegen deutlich darunter.

Stand: 06.06.2023 Seite 22 von 51

Tabelle 11: Auflistung der Arten/ Taxa nach abnehmender Abundanz und Stetigkeit

Art/ Taxon	Abundanz	Art/ Taxon	Anzahl Proben mit Nachweis (gesamt n = 155)	Stetigkeit [%]
Urothoe poseidonis	2.196	Scoloplos armiger agg.	88	56,8%
Heteromastus filiformis	1.547	Cerastoderma edule	69	44,5%
Oligochaeta sum.	897	Macoma balthica	66	42,6%
Scoloplos armiger agg.	638	Heteromastus filiformis	63	40,6%
Peringia ulvae	620	Pygospio elegans	61	39,4%
Tharyx killariensis	302	Urothoe poseidonis	58	37,4%
Cerastoderma edule	293	Obelia dichotoma	56	36,1%
Capitella capitata	292	Capitella capitata	53	34,2%
Mytilus edulis	246	Tharyx killariensis	53	34,2%
Pygospio elegans	238	Alitta succinea	44	28,4%
Macoma balthica	173	Arenicola marina	44	28,4%
Austrominius modestus	161	Clytia hemisphaerica	36	23,2%
Alitta succinea	156	Peringia ulvae	35	22,6%
Nereis spp.juv.	64	Oligochaeta sum.	33	21,3%
Scrobicularia plana	55	Scrobicularia plana	27	17,4%
Polydora spp.juv.	54	Nereis spp.juv.	24	15,5%
Arenicola marina	52	Nephtys hombergii	23	14,8%
Magallana gigas	48	Polydora spp.juv.	20	12,9%
Hediste diversicolor	35	Bathyporeia sarsi	18	11,6%
Bathyporeia sarsi	35	Eteone longa	17	11,0%
Lanice conchilega	34	Nephtys spp.juv.	15	9,7%
Polydora cornuta	31	Retusa obtusa	15	9,7%
Retusa obtusa	25	Eumida sanguinea	14	9,0%
Nephtys hombergii	23	Hediste diversicolor	14	9,0%
Nephtys spp.juv.	21	Lanice conchilega	12	7,7%
Eteone longa	20	Carcinus maenas	11	7,1%
Melita palmata	20	Nemertea sum.	11	7,1%
Eumida sanguinea	17	Phyllodoce mucosa	10	6,5%
Phyllodoce mucosa	17	Austrominius modestus	9	5,8%
Carcinus maenas	13	Magallana gigas	9	5,8%
Hemigrapsus takanoi	12	Mytilus edulis	9	5,8%
Nemertea sum.	12	Crangon crangon	8	5,2%
Kurtiella bidentata	10	Kurtiella bidentata	7	4,5%
Malmgrenia arenicolae	9	Mya arenaria	7	4,5%
Crangon crangon	8	Magelona johnstoni	6	3,9%
Mya arenaria	8	Malmgrenia arenicolae	6	3,9%
Chaetozone setosa	7	Spio goniocephala	5	3,2%
Magelona johnstoni	7	Chaetozone setosa	4	2,6%

Stand: 06.06.2023 Seite 23 von 51

Art/ Taxon	Abundanz	Art/ Taxon	Anzahl Proben mit Nachweis (gesamt n = 155)	Stetigkeit [%]
Polydora ciliata	7	Nephtys cirrosa	4	2,6%
Phyllodoce groenlandica	6	Phyllodoce groenlandica	4	2,6%
Spio goniocephala	5	Spio symphyta	4	2,6%
Gammarus spp.juv.	5	Melita palmata	4	2,6%
Nephtys cirrosa	4	Glycera alba	3	1,9%
Phyllodoce spp.juv.	4	Phyllodoce rosea	3	1,9%
Spio symphyta	4	Phyllodoce spp.juv.	3	1,9%
Gammarus locusta	4	Polydora ciliata	3	1,9%
Glycera alba	3	Electra pilosa	3	1,9%
Phyllodoce rosea	3	Gammarus locusta	3	1,9%
Fabulina fabula	3	Gammarus spp.juv.	3	1,9%
Magelona filiformis	2	Hemigrapsus takanoi	3	1,9%
Spio martinensis	2	Fabulina fabula	3	1,9%
Proasellus coxalis	2	Magelona filiformis	2	1,3%
Ensis spp.juv.	2	Polydora cornuta	2	1,3%
Macomangulus tenuis	2	Spio martinensis	2	1,3%
Mulinia lateralis	2	Proasellus coxalis	2	1,3%
Harmothoe spp.	1	Ensis spp.juv.	2	1,3%
Malmgrenia castanea	1	Macomangulus tenuis	2	1,3%
Microphthalmus aberrans	1	Mulinia lateralis	2	1,3%
Microphthalmus spp.	1	Harmothoe spp.	1	0,6%
Orbinia sertulata	1	Malmgrenia castanea	1	0,6%
Phyllodoce maculata	1	Microphthalmus aberrans	1	0,6%
Pseudopolydora pulchra	1	Microphthalmus spp.	1	0,6%
Sigalion mathildae	1	Orbinia sertulata	1	0,6%
Spiophanes bombyx	1	Phyllodoce maculata	1	0,6%
Sagitta bipunctata	1	Pseudopolydora pulchra	1	0,6%
Cumopsis goodsir	1	Sigalion mathildae	1	0,6%
Gammarus oceanicus	1	Spiophanes bombyx	1	0,6%
Pontocrates altamarinus	1	Sagitta bipunctata	1	0,6%
Abra alba	1	Sertularia cupressina	1	0,6%
Lepidochitona cinerea	1	Cumopsis goodsir	1	0,6%
Electra pilosa	+	Gammarus oceanicus	1	0,6%
Clytia hemisphaerica	+	Pontocrates altamarinus	1	0,6%
Obelia dichotoma	+	Abra alba	1	0,6%
Sertularia cupressina	+	Lepidochitona cinerea	1	0,6%

Häufigkeit als Summe über alle Stationen. Für die Arten der Gruppen Bryozoa und Hydrozoa konnten keine Individuenzahlen bestimmt werden, weshalb hier lediglich ihre Präsenz mit "+" angegeben ist.

Stand: 06.06.2023 Seite 24 von 51

Tabelle 12: Auflistung der Arten/ Taxa nach abnehmender Biomasse

Art/ Taxon	Gesamtbiomasse (Feuchtgewicht [g])
Magallana gigas	5.903,73
Mytilus edulis	1.590,94
Cerastoderma edule	745,75
Scrobicularia plana	125,68
Mya arenaria	70,44
Arenicola marina	61,18
Macoma balthica	42,20
Alitta succinea	31,72
Heteromastus filiformis	27,35
Scoloplos armiger agg.	11,38
Peringia ulvae	9,95
Hediste diversicolor	8,52
Lanice conchilega	7,11
Carcinus maenas	6,70
Nephtys hombergii	6,24
Urothoe poseidonis	5,37
Austrominius modestus	4,27
Hemigrapsus takanoi	4,14
Mulinia lateralis	2,41
Capitella capitata	1,94
Oligochaeta sum.	0,86
Tharyx killariensis	0,85
Orbinia sertulata	0,76
Obelia dichotoma	0,60
Sertularia cupressina	0,51
Pygospio elegans	0,47
Glycera alba	0,47
Nemertea sum.	0,36
Nereis spp.juv.	0,34
Nephtys cirrosa	0,26
Retusa obtusa	0,25
Crangon crangon	0,19
Polydora spp.juv.	0,17
Nephtys spp.juv.	0,16
Magelona filiformis	0,13
Eumida sanguinea	0,12
Malmgrenia castanea	0,12
Phyllodoce groenlandica	0,11
Eteone longa	0,09

Stand: 06.06.2023 Seite 25 von 51

Art/ Taxon	Gesamtbiomasse (Feuchtgewicht [g])
Bathyporeia sarsi	0,09
Malmgrenia arenicolae	0,08
Magelona johnstoni	0,07
Kurtiella bidentata	0,06
Gammarus locusta	0,05
Lepidochitona cinerea	0,05
Sigalion mathildae	0,05
Harmothoe spp.	0,04
Phyllodoce spp.juv.	0,03
Phyllodoce mucosa	0,03
Melita palmata	0,02
Polydora ciliata	0,01
Gammarus oceanicus	0,01
Clytia hemisphaerica	0,01
Polydora cornuta	0,01
Phyllodoce rosea	0,01
Chaetozone setosa	0,01
Macomangulus tenuis	0,01
Abra alba	0,01
Fabulina fabula	0,01
Spio martinensis	< 0,01
Spio symphyta	< 0,01
Spio goniocephala	< 0,01
Spiophanes bombyx	< 0,01
Gammarus spp.juv.	< 0,01
Proasellus coxalis	< 0,01
Ensis spp.juv.	< 0,01
Pseudopolydora pulchra	< 0,01
Phyllodoce maculata	< 0,001
Pontocrates altamarinus	< 0,001
Cumopsis goodsir	< 0,001
Electra pilosa	< 0,001
Microphthalmus aberrans	< 0,001
Microphthalmus spp.	< 0,001
Sagitta bipunctata	< 0,001

Biomasse als Summe über alle Stationen.

Stand: 06.06.2023 Seite 26 von 51

4.1.6 Dominanz bei Abundanz und Biomasse

Für die Betrachtung der Abundanz- und Biomassenstruktur werden nach Engelmann (Engelmann, H. D. 1978) die eudominanten und dominanten Arten aller Proben herangezogen (Tabelle 13). Dies sind in vorliegender Untersuchung 17 Arten/ Taxa für die Abundanz (Tabelle 14) und 15 Arten/ Taxa für die Biomasse (Tabelle 15).

Tabelle 13 Einteilung der Dominanzklassen nach Engelmann, H-D. 1978

Dominanzklasse	Relative Abundanz [%]
sporadisch	0,00 – 0,31
subrezedent	0,32 - 0,99
rezedent	1,00 – 3,19
subdominant	3,20 – 9,99
dominant	10,00 – 31,99
eudominant	32,00 – 100

Erläuterung:

Es werden ausschließlich die Taxa der Dominanzklassen eudominant und dominant betrachtet. Die Taxa die den Dominanzklassen sporadisch, subrezedent, rezedent und subdominant angehören werden unter sonstige zusammengefasst.

Die mittleren Abundanzen variiren bezüglich der Gesamtdichten und Artzusammensetzung zwischen den drei Biotoptyen Sandwatt, Mischwatt und Muschelbank (Abbildung 10).

Heteromastus filiformis kommt im Mischwatt (1.474 ± 238 Ind./m², Median: 1.534 Ind./m²) und *Urothoe poseidonis* im Sandwatt (1.259 ± 1.392 Ind./m², Median: 735 Ind./m²) mit den größten mittleren

Abundanzen vor (Tabelle 14). Innerhalb der Muschelbank besitzt *Heteromastus filiformis* (1.302 \pm 1.424 Ind./m², Median: 891 Ind./m²) und *Oligochaeta* sum. ebenfalls eine hohe Dominanz (1.572 \pm 1.553 Ind./m², Median: 1.772 Ind./m²). Die Gemeine Wattschnecke *Peringia ulvae* weist im Mischwatt im Mittel 672 \pm 416 Ind./m², Median: 762 Ind./m² auf (Abbildung 10). Die mittleren Abundanzen aller weiteren dominanten und eudominanten Arten sind Tabelle 14 zu entnehmen.

Stand: 06.06.2023 Seite 27 von 51

Tabelle 14 Mittlere Abundanzen (Ind./m²) der Makrozoobenthos-Arten in den drei Biotoptypen

Art sortiert nach	Großtaxon	Sandwatt	Mischwatt	Muschelbank
Abundanz (Individuendichte)				
Heteromastus filiformis	Annelida	20,19	1474,80	1302,00
Urothoe poseidonis	Crustacea	1259,00	0	3,6
Oligochaeta sum.	Oligochaeta	5,68	57,00	1572,00
Peringia ulvae	Mollusca	145,75	672,20	0
Cerastoderma edule	Mollusca	33,87	411,20	18,2
Scoloplos armiger agg.	Annelida	353,81	0	40,40
Tharyx killariensis	Annelida	26,44	290,20	180,00
Mytilus edulis	Mollusca	0	0	451,80
Capitella capitata	Annelida	43,63	10,8	385,60
Austrominius modestus	Crustacea	0	0	295,60
Alitta succinea	Annelida	13,18	225,80	18,20
Pygospio elegans	Annelida	92,37	126,80	14,60
Bathyporeia sarsi	Crustacea	13,19	0	22,00
Lanice conchilega	Annelida	9,19	0	33,20
Nephtys hombergii	Annelida	12,81	0	1,80
Nemertea sum.	Nemertea	4,00	1,80	7,20
Nephtys cirrosa	Annelida	0,56	0	5,40

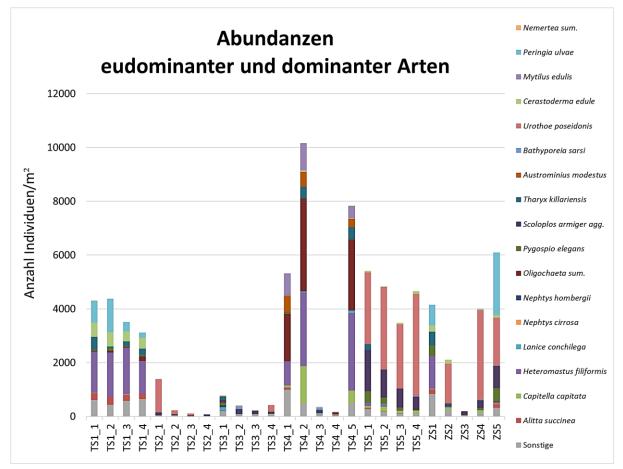


Abbildung 10 Abundanzen der eudominanten und dominanten Makrozoobenthos-Arten

Stand: 06.06.2023 Seite 28 von 51



Abbildung 11: Relative Abundanz (%) eudominanter und dominanter Arten

Die Pazifische Auster *Magallana gigas* dominiert deutlich bei der Biomasse mit einem Anteil von 68,10 % an der Gesamtbiomasse (Tabelle 15). Der prozentuale Anteil von *Mytilus edulis* an der Biomasse beträgt 18,40 %. Die Biomasse bei *Cerastoderma edule* ist mit 8,51 % gering, bedingt durch die starke Dominanz von *Magallana* gigas. In der prozentualen Darstellung wird der relative Anteil der häufigsten Arten an den einzelnen Stationen deutlich (Abbildung 13).

Die Biomassen der eudominanten und dominanten Arten an jeder Station sind in Abbildung 12 dargestellt. Auf den Stationen TS4_1 (15.644,91 g/ m²) und TS4_2 (22.956,84 g/m²) sowie TS4_4 (15.610,65 g/m²) weist *Magallana gigas* die höchsten Biomassen auf.

Stand: 06.06.2023 Seite 29 von 51

Tabelle 15: Biomasse der 15 Arten mit den höchsten Werten (% der gesamten Biomasse)

Art	Großtaxa	% der Gesamt- biomasse
Magallana gigas	Mollusca	68,10
Mytilus edulis	Mollusca	18,40
Cerastoderma edule	Mollusca	8,51
Scrobicularia plana	Mollusca	1,43
Mya arenaria	Mollusca	0,81
Arenicola marina	Annelida	0,71
Macoma balthica	Mollusca	0,50
Alitta succinea	Annelida	0,36
Scoloplos armiger agg.	Annelida	0,13
Peringia ulvae	Mollusca	0,10
Lanice conchilega	Annelida	0,08
Carcinus maenas	Crustacea	0,08
Nephtys hombergii	Annelida	0,07
Obelia dichotoma	Cnidaria	0,01
Nephtys spp.juv.	Annelida	0,01
Sonstige	Annelida, Bryozoa, Chaetognatha, Cnidaria, Crustacea, Mollusca, Nemertea	0,70

Biomasse (g Feuchtgewicht/m²) berechnet als Summe über alle Stationen, der Gesamtwert (100%) stellt die Summe der Biomassen aller Individuen dar.

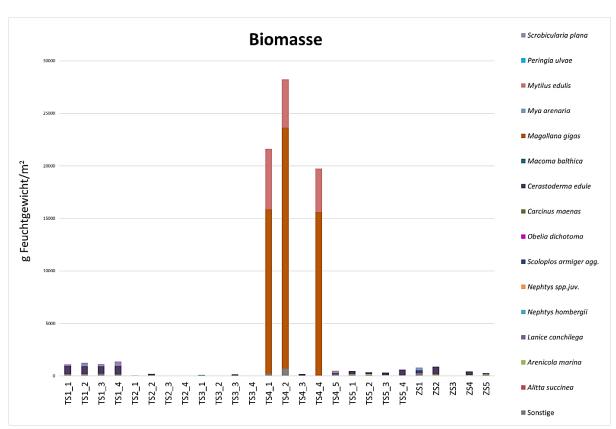


Abbildung 12: Biomasse der eudominanten und dominanten Makrozoobenthos-Arten an jeder Station

Stand: 06.06.2023 Seite 30 von 51

Abbildung 13: Relative Biomasse (% von g Feuchtgewicht/m²) der eudominanten und dominanten Makrozoobenthos-Arten an jeder Station

4.1.7 Diversität

Die Berechnung der Diversität nach Shannon-Wiener ergibt für das gesamte Untersuchungsgebiet einen Diversitätsindex H' von 1,65 (± 0,51, Median 1,77, Abbildung 14). Auf der Station TS3_1 ist die Diversität am höchsten (H' = 2,59), auf der Station TS2_1 am niedrigsten (H' = 0,62). Wie zu erwarten wurde die höchste mittlere Diversität in der Muschelbank und im Mischwatt erreicht, während sie im hellen und dunklen Sandwatt am niedrigsten ist (Tabelle 16). Das stärker strukturierte Habitat der Muschelbank sowie die Bereiche des Mischwatts stellen vor der Strömung und den Gezeiten geschütztere Habitate dar, sodass sich hier auch feineres Sediment wie auch organisches Material ablagern kann. Der Wassergehalt liegt auch bei niedrigem Tidenstand noch bei bis zu 50 % und bietet so auch empfindlicheren Arten Schutz. Das Sandwatt hingegen ist von einer starken Wassertrömung geprägt, wo sich nur noch gröbere Sandpartikel ablagern und das Wasser schneller versickert. Durch diese extremen Bedingungen im Sandwatt ist somit eine höhere Diversität in den Benthosgemeinschaften des Mischwatts und der Muschelbank zu erwarten.

Tabelle 16: Shannon-Wiener Index H' in den Biotoptypen

Shannon-Wiener-Index H'	Dunkles Sandwatt	Mischwatt	Helles Sandwatt	Muschelbank
Mittelwert	1,36	1,99	1,43	2,02
Median	1,36	2,02	1,39	1,93
Standardabweichung	0,02	0,16	0,56	0,23

Erläuterung: Stationen dunkles Sandwatt: ZS2, ZS3, Mischwatt: TS1_1-TS1_4, ZS1, helles Sandwatt: TS2_1-TS2_4, TS3_1-TS3_4, TS5_1-TS5_4, ZS4, ZS5, Muschelbank: TS4_1-TS4_5.

Stand: 06.06.2023 Seite 31 von 51

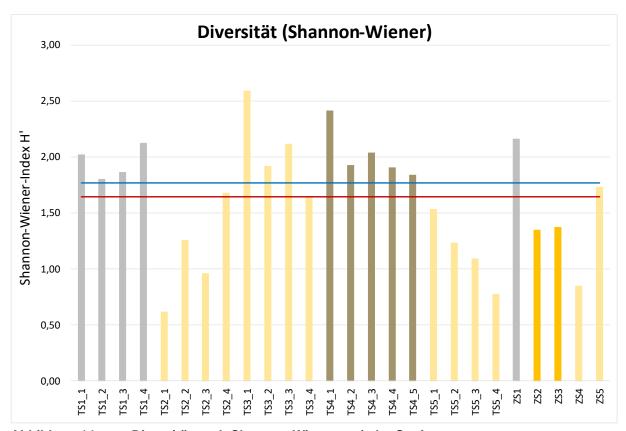


Abbildung 14: Diversität nach Shannon-Wiener an jeder Station

Erläuterung:

Die rote Linie stellt den Mittelwert dar, die blaue Linie den Median. Stationen dunkles Sandwatt: ZS2, ZS3, Mischwatt: TS1_1-TS1_4, ZS1, helles Sandwatt: TS2_1-TS2_4, TS3_1-TS3_4, TS5_1-TS5_4, ZS4, ZS5, Muschelbank: TS4_1-TS4_5.

4.1.8 Multivariate Gemeinschaftsanalyse entlang der Trassen

Die ANOSIM-Analyse mit einem globalen R-Wert von 0,456 bestätigt eine sehr geringe Ähnlichkeit der einzelnen Stationen untereinander (Abbildung 15).

Die dargestellten Gruppenbildungen (Ähnlichkeiten) des MDS-Plots mit einem Stress-Wert von 0,14 lässt die Interpretation zu, dass die Ordination eine potenziell nützliche Darstellung ist (= ausreichend), wobei nicht zu viel Vertrauen in die Details gelegt werden sollte (s. Kap. 3.4). Der MDS-Plot spiegelt die Ergebnisse der Clusteranalyse deutlich wider (Abbildung 16).

Deutlich bilden sich zwei Biotope als geschlossene Einheit heraus: das Mischwatt (Biotoptyp: KWKu) und die Muschelbank (Biotoptyp: KWM). Nur zwei Stationen innerhalb der Muschelbank (TS4_3, TS4_4) fallen heraus, sie ähneln sich zu 50 % mit zwei Stationen (TS3_2, TS3_3) des hellen Sandwatts.

Die größte Ähnlichkeit zwischen den einzelnen Biotoptypen besteht unter den Stationen der Muschelbank und des Mischwatts (Abbildung 16). Die Stationen des hellen und dunklen Sandwatts stehen diesen mit einer deutlich geringeren Ähnlichkeit (< 40%) gegenüber.

Die sehr geringe Ähnlichkeit der Stationen untereinander ist begründet in der Vielzahl von unterschiedlichen Taxa innerhalb der Biotoptypen, die hinsichtlich ihrer Morphologie und Topographie sehr verschieden sind, so wird beispielsweise die Steinplate von zwei Prielsystemen durchzogen.

Stand: 06.06.2023 Seite 32 von 51

Abbildung 15: Clusteranalyse des Makrozoobenthos

Erläuterung:

KWKu: Mischwatt, KWKh: helles Sandwatt, KWM: Muschelbank, KWKd dunkles Sandwatt.

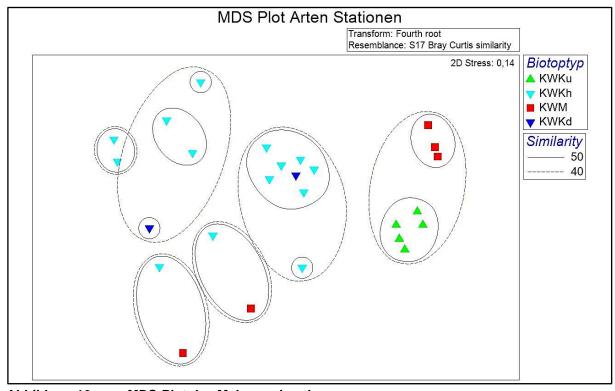


Abbildung 16: MDS-Plot des Makrozoobenthos

Erläuterung: KWKu: Mischwatt, KWKh: helles Sandwatt, KWM: Muschelbank, KWKd dunkles Sandwatt.

Die SIMPER Analyse weist somit eine Reihe von unterschiedlichen Charakterarten auf (Tabelle 17), unter diesen sind ausschließlich *Scoloplos armiger agg.* und *Urothoe poseidonis* am weitesten verbreitet.

Die größte Anzahl spezifischer Charakterarten und damit die höchste allgemeine Unähnlichkeit zueinander hat das Mischwatt und die Muschelbank. *Arenicola marina* ist charakteristisch für das dunkle Sandwatt (Biotoptyp: KWKd, ZS2), sowie *Pygospio elegans* für das helle Sandwatt des Baltrumer Rückseitenwatts (Biotoptyp: KWKh, TS5_1 – TS5_4).

Stand: 06.06.2023 Seite 33 von 51

Tabelle 17: Charakterarten der Quertransekte und der Zwischenstationen (SIMPER Analyse)

Charak-	Dui	chschnitt	liche Ähn			alb der Quonen (ZS1		cte (TS1 –	TS5) und	der
terarten (>50% der Ähn- lichkeit je	76,64	42,25	38,52	29,06	67,81	75,83	58,56	38,41	52,68	72,50
Quer- transekt und Zwi-	TS1	TS2	TS3	TS4	TS5	ZS1	ZS2	ZS3	ZS4	ZS5
schen- station)	KWKu	KWKh	KWKh	KWM	KWKh	KWKu	KWKd	KWKd	KWKh	KWKh
Hetero- mastus fi- liformis	х			х		х				
Cerasto- derma edule	х				х		х			
Peringia ulvae	x					x				х
Alitta succinea	x									
Macoma balthica	Х			х		х				
Tharyx killarien- sis	х					х				
Scoloplos armiger agg.		х	х	х	х			х	х	х
Urothoe posei-do- nis		х			х		х		х	х
Nephtys hombergii		х	х							
Capitella capitata			х	х	х					
Oligo- chaeta sum				x						
Mytilus edulis				х						
Austro- minius modestus				х						
Ma- gallana gigas				х						
Lanice conchi- lega		-		x						
Pygospio elegans					х					
Arenicola marina							х			

Erläuterung: KWKu: Mischwatt, KWKh: helles Sandwatt, KWM: Muschelbank, KWKd dunkles Sandwatt.

Stand: 06.06.2023 Seite 34 von 51

4.2 Sediment (Stechrohrproben)

Eine Charakterisierung der Sedimente an den Stationen mit den Korngrößenanteilen der Sedimente je Station und Probe ist in Tabelle 18 dargestellt.

Die in den Proben enthaltenen Muschelschalenreste werden aufgrund ihrer Größe den Korngrößenfraktionen > 2 mm (Kies) und 1 – 2 mm (Grobsand 2) zugerechnet. In allen Proben bestehen diese Größenfraktionen ausschließlich aus Muschelschalenresten.

Tabelle 18: Charakterisierung der Stationen anhand der Sedimentproben

Probe- nahme- Station	Biotoptyp	Kies (G)/ Steine (X)	Grob- sand 2 (gS2)	Grob- sand 1 (gS1)	Mittel- sand (mS)	Fein- sand (fS)	Feinst- sand (ffS)	Ton/ Schluff (T/U)
ZS1	Mischwatt	0,85 %	0,00 %	0,11 %	0,67 %	12,92 %	63,77 %	21,67 %
TS1_2	Mischwatt	6,79 %	0,00 %	0,06 %	0,57 %	18,21 %	56,58 %	17,78 %
ZS2	Dunkles Sandwatt	2,01 %	0,00 %	0,27 %	0,42 %	34,98 %	52,99 %	9,34 %
ZS3	Dunkles Sandwatt	0,00 %	0,00 %	0,00 %	0,48 %	56,31 %	38,74 %	4,47 %
TS2_2	Helles Sand- watt	0,00 %	0,00 %	0,00 %	0,22 %	64,04 %	32,75 %	2,99 %
TS3_2	Helles Sand- watt	0,00 %	0,00 %	0,00 %	0,27 %	73,97 %	23,64 %	2,12 %
ZS4	Helles Sand- watt	0,00 %	0,00 %	0,01 %	12,11 %	81,05 %	2,89 %	3,94 %
TS5_1	Helles Sand- watt	0,00 %	0,00 %	0,00 %	15,05 %	78,58 %	3,86 %	2,51 %
ZS5	Helles Sand- watt	0,00 %	0,00 %	0,17 %	13,09 %	80,58 %	3,79 %	2,38 %
TS4_2	Muschel- bank	0,33 %	0,34 %	0,27 %	0,65 %	24,78 %	65,65 %	7,98 %

Erläuterung:

Definition der Korngrößen: s.Tabelle 3,

Rot: Sedimenttyp mit höchstem Anteil in der Probe.

Fett: auffällig hoher Anteil/ Ausreißer.

Auf den Stationen überwiegt der Anteil an Feinsand (Tabelle 18). Muschelschalenreste (Bestandteil der Kies/ Stein Fraktion) sind mit Ausnahme von zwei von zehn Stationen (TS1_2 und ZS2) in den Proben kaum vorhanden. Die Stationen im Dornumer Watt im südlichen Bereich der Trassen (ZS1, TS1_2 und ZS2) sowie die Station in der Muschelbank (TS4_2) sind von Feinstsand (ffS) und Ton/ Schluff (T/U) geprägt. Feinsand (fS) macht im Mischwatt (ZS1 und TS1_2) einen geringen Anteil, im dunklen Sandwatt einen erheblichen Anteil von 34,98 % (ZS2) bis zu 56,31 % (ZS3) aus. Grob- und Mittelsande kommen in geringen Mengen vor. Auf den Stationen im nördlichen Bereich der Trassen, im Baltrumer Inselwatt (ZS4, TS5_1 und ZS5), nimmt der Anteil an Mittelsand (mS) in den Proben zu, während sich die dominierende Korngröße von Feinstsand (ffS) zu Feinsand (fS) verschiebt (Tabelle 18 und Abbildung 17).

Auf den Stationen ZS3 bis ZS5 (hauptsächlich helles Sandwatt, s.Tabelle 18) liegt der Feinsandanteil zwischen 56,31 % und 81,05 %. Der höchste Feinstsandanteil mit 65,65 % wurde in der Muschelbank festgestellt (TS4 2). Der Ton/Schluff – Anteil ist auf Station ZS1 am höchsten (21,67 %).

Der Gewichtsanteil an Mittelsand lag auf den nördlichen Stationen im hellen Sandwatt (ZS4, TS5_1 und ZS5) mit 12,11 %, 15,05 % und 13,09 % am höchsten.

Stand: 06.06.2023 Seite 35 von 51

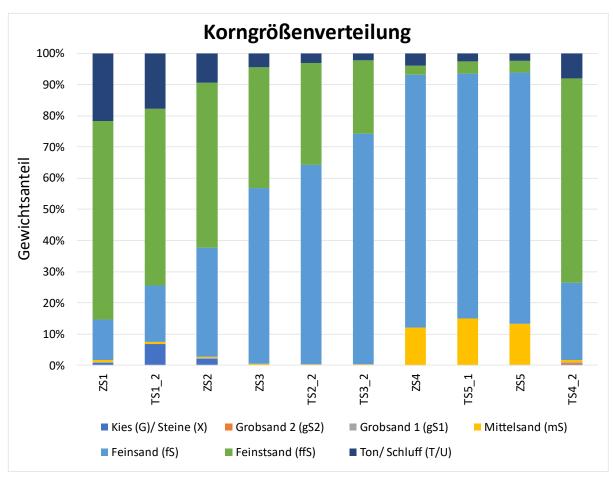


Abbildung 17: Korngrößenverteilung der Sedimente

Erläuterung:

Korngrößenfraktionen: G = Kies (>2.000 µm), gS2 = Grobsand (1.000 – 2.000 µm), gS1 = Grobsand (500 – 1.000 µm), mS = Mittelsand (250 – 500 µm), fS = Feinsand (125 – 250 µm), ffS = Feinstsand (63 – 125 µm), T/U = Ton/ Schluff (<63 µm).

Aus Abbildung 18 ist die Sedimentklassifikation nach Figge (1981) zu entnehmen. Die zehn entnommenden Sedimentproben entsprechen weitestgehend dieser Verteilung. Die Stationen ZS1 und ZS2 sowie TS_2 und TS4_2 sind von Feinstsand geprägt und ZS3 – ZS5, TS2_2, TS3_2 und TS5_1 sind der Kategorie Feinsand zuzuordnen.

Stand: 06.06.2023 Seite 36 von 51

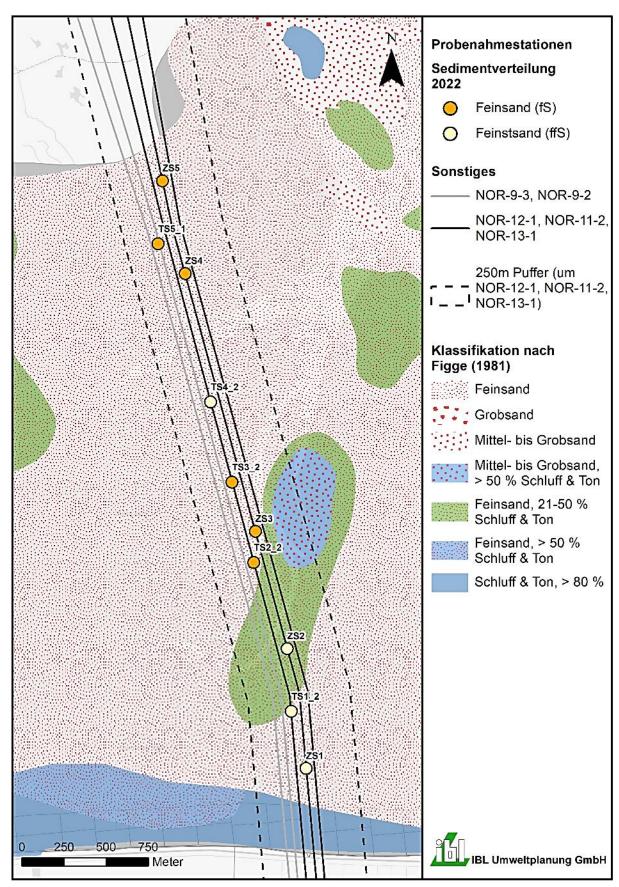


Abbildung 18: Sedimentverteilung 2022

Erläuterung:

Die Sedimentcharakterisierung an den Stationen gibt die Bodenart (AG-Boden 2005) wieder. Für genauere Beschreibung der Sedimentzusammensetzung: s. Tabelle 3.

Stand: 06.06.2023 Seite 37 von 51

4.3 Wattbiotop-Charakerisierung durch Zählrahmen

Mit Hilfe der Zählrahmen konnten für alle drei Biotoptypen im Untersuchungsgebiet die makroskopisch sichtbaren Taxa erfasst werden. Insgesamt wurden drei Arten in den Zählrahmen ausgezählt (*Mytilus edulis, Littorina littorea* und *Arenicola marina*) und der prozentuale Bedeckungsgrad je Zählrahmen für *Magallana gigas, Fucus* spp, Balaniden, *Ulva* spp. und Diatomeen (Tabelle 19) bestimmt.

Die mittlere Besiedlungsdichte (Besiedlungsspuren) lag in den 25 Zählrahmen für die drei ausgezählten Arten bei 8.7 ± 25.3 Ind./m² (Median: 0.0 Ind./m²). Die mittlere Besiedlungsdichte für *Mytilus edulis* lag bei 14.5 ± 41.5 Ind./m² (Median: 0.0 Ind./m²), für *Littorina littorea* lag sie bei 0.8 ± 1.8 Ind./m² (Median: 0.0 Ind./m²) und bei *Arenicola marina* wurden im Mittel 10.8 ± 12.0 Ind./m² (Median: 4 Ind./m²) ermittelt. Besiedlungsspuren des Bäumchenröhrenwurms *Lanice conchilega* konnten in den Zählrahmen nicht festgestellt werden.

Die höchste Besiedlungsdichte für *Mytilus edulis* wurde im Zählrahmen ZR_14 im Sandwatt, am östlichen Ende in der Verlängerung der Muschelbank, festgestellt (200 Ind./ m^2 , Abbildung 19). In der Muschelbank wurde *Mytilus edulis* mit 20,7 \pm 27,2 Ind./ m^2 (Median: 28,5 Ind./ m^2) erfasst und im Mischwatt wurde sie nicht nachgewiesen.

Die mittlere Abundanz für *Littorina littorea* in den Zählrahmen ZR_9, ZR_12, ZR_21, ZR_24 und ZR_25 (Muschelbank) lag bei 2,1 ± 3,8 Ind./m² (Median: 4,0 Ind./m²). Im Sandwatt konnte *Littorina littorea* ausschließlich in ZR_10 mit 1 Ind./m² festgestellt werden, wobei sie im Mischwatt gänzlich fehlt.

Arenicola marina konnte im Mischwatt mit 9.5 ± 16.5 Ind./m² (Median: 15.0 Ind./m²) und im Sandwatt mit 13.1 ± 13.3 Ind./m² (Median: 7.0 Ind./m²) nachgewiesen werden. Innerhalb der Muschelbank wurde Arenicola marina nicht festgestellt.

Im ZR_8 und ZR_13 (Sandwatt) wurden weder Spuren von *Mytilus edulis* und *Littorina littorea* noch von *Arenicola marina* nachgewiesen.

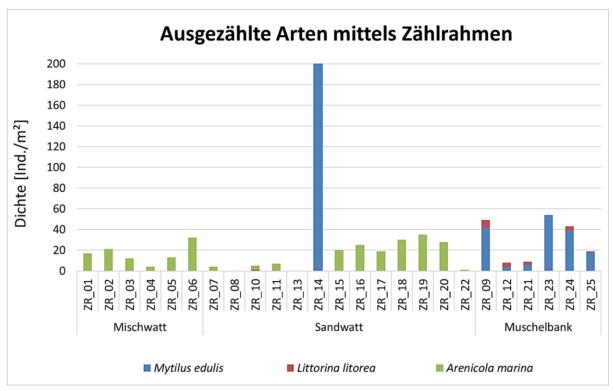


Abbildung 19: Dichte der makroskopisch ausgezählten Arten pro Zählrahmen

Stand: 06.06.2023 Seite 38 von 51

Tabelle 19 gibt Auskunft über den prozentualen Bedeckungsgrad weiterer potenziell biotopprägender Arten/Taxa (hier: *Magallana gigas*, *Fucus* spp, Balaniden, *Ulva* spp. und Diatomeen). An den Stationen der Muschelbank (ZR_9, ZR_12, ZR_23 – ZR_25) betrug der Deckungsgrad der Auster *Magallana gigas* 10 % – 44 %. Die festgestellten Balaniden hefteten überwiegend an Austern und Miesmuscheln an, weshalb innerhalb der Muschelbank Deckungsgrade von 30 % (ZR_9) – 75 % (ZR_12) ausgezählt wurden. Arten der Gattung *Fucus* spp. wurden ebenfalls mit einem Deckungsgrad von 20 % (ZR_12) – 65 % (ZR_25) ausschließlich im Bereich der Muschelbank festgestellt. *Ulva* spp. wurde im Mischwatt mit geringen Deckungsgraden von 1 % – 6 % bestimmt. Diatomeen, welche im Misch- und Schlickwatt typisch sind, konnten im Mischwatt mit Deckungsgraden von 1 % (ZR_3) – 55 % (ZR_6) geschätzt werden. Weiterhin sind der Tabelle 19 vorhandene Wasser- und Schillbedeckungsgrade innerhalb der Zählrahmen zu entnehmen.

Tabelle 19: Prozentueller Deckungsgrad weiterer biotopprägender Arten/Taxa

Biotoptyp	Zählrahmen- bez.	M. gigas	Fucus spp.	Balaniden auf Molluscca	<i>Ulva</i> spp.	Dia- tomeen	Wasser deckung	Schillbe- deckung
	ZR_01	0	0	0	1	32	0	0
Ħ	ZR_02	0	0	0	6	2	0	11
hwa	ZR_03	0	0	0	3	1	0	2
Mischwatt	ZR_04	0	0	0	4	25	0	1
2	ZR_05	0	0	0	1	37	0	2
	ZR_06	0	0	0	3	55	0	5
	ZR_07	0	0	0	0	0	0	0
	ZR_08	0	0	0	0	0	0	0
	ZR_10	0	0	0	0	6	0	1
	ZR_11	0	0	0	0	3	0	0
	ZR_13	23	0	75	0	1	0	0
/att	ZR_14	0	0	0	0	0	0	20
Sandwatt	ZR_15	0	0	0	0	0	2	1
Sa	ZR_16	0	0	0	1	2	10	0
	ZR_17	0	0	0	0	0	10	0
	ZR_18	0	0	0	0	0	10	0
	ZR_19	0	0	0	0	0	10	0
	ZR_20	0	0	0	0	0	10	0
	ZR_22	0	0	0	1	0	0	5
	ZR_09	30	41	30	0	0	0	2
ank	ZR_12	27	20	75	1	1	0	0
Muschelbank	ZR_21	10	55	50	1	0	0	0
ısch	ZR_23	38	49	50	0	0	0	0
Μ	ZR_24	44	48	50	0	0	0	0
	ZR_25	34	65 05 Tailfix days	60	0	0	0	0

Erläuterung:

Ausgezählt auf 25 Teilflächen des 1m² Zählrahmens, eine Teilfläche entspricht dabei 4%.

Stand: 06.06.2023 Seite 39 von 51

5 Einordnung der Ergebnisse

5.1 Makrozoobenthos

Watten werden von der eulitoralen Variante der *Macoma balthica*-Gemeinschaft besiedelt (Reineck u. a. 1982). Die Besiedlungsmuster innerhalb dieser Gemeinschaft ändern sich jedoch in unterschiedlichen Teilgebieten des Watts (Dörjes u. a. 1969). Im Untersuchungsgebiet kommen helles und dunkles Sandwatt sowie Mischwatt und Muschelbänke vor. Sandwatten werden durch die *Scoloplos armiger*-Siedlung gekennzeichnet. Dies stimmt mit dem regelmäßigen Vorkommen der häufigsten Sandwattarten *Scoloplos armiger*, *Nephtys hombergii*, der röhrenbauenden Art *Pygospio elegans* (Annelida) sowie der Muschel *Macoma balthica* (Grotjahn 2006, Reineck 1978) auf den Sandwattstationen überein. *Scoloplos armiger* und *Pygospio elegans* kamen im Untersuchungsgebiet vor. Weitere Begleitarten wie u. a. *Arenicola marina* (Annelida) und *Cerastoderma edule* (Mollusca) wurden ebenfalls erfasst. *Hediste diversicolor* (Annelida) konnte auf keiner Sandwattstation erfasst werden.

Für das Mischwatt weist Dörjes (1982) Cerastoderma edule- und Arenicola marina-Populationen aus, dies deckt sich mit den Ergebnissen des Dornumer Watts. Weiter sind im Mischwatt Heteromastus filiformis, Macoma balthica und Pygospio elegans häufig (Grotjahn 2006, Reineck 1978), auch diese Arten kamen im Untersuchungsgebiet in hohen Dichten und Stetigkeiten vor. Sandwatten sind individuenärmer und weisen eine geringere Produktivität als Mischwatt (Reineck 1978) auf, was in der vorliegenden Untersuchung ebenfalls bestätigt wurde. Das Untersuchungsgebiet gehört dem Lebensraumtyp "Vegetationsfreies Schlick-, Sand- und Mischwatt" (Natura 2000-Code 1140) an. Auf den Sandwattstationen wurden 12 der 18 und im Mischwatt 16 der 24 lebensraumtypischen Arten festgestellt (Tabelle 20). Die lebensraumtypischen Arten gemäß des Arteninventars für Sand- und Mischwatt sind somit weitgehend vorhanden (NLWKN 2011).

Stand: 06.06.2023 Seite 40 von 51

Tabelle 20 Stationen mit Nachweis der Makrozoobenthosarten des Lebensraumtyps 1140 Vegetationsfreies Schlick-, Sand- und Mischwatt

Art	Sandwatt	Mischwatt
Arenicola marina	TS2_1, TS2_2, TS5_1 – TS5_4, ZS2, ZS4, ZS5	TS1_1 - TS1_4, ZS1
Bathyporeia sarsi	TS2_1, TS3_2, TS3_3, TS5_3, TS5_4, ZS4, ZS5	-
Carcinus maenas	TS2_2, TS3_2, TS3_4, TS5_1, TS5_2	TS1_3
Capitella capitata	TS2_4, TS3_1, TS3_4, TS5_1 - TS5_4, ZS2, ZS4, ZS5	TS1_1, TS1_3, TS1_4, ZS1
Cerastoderma edule	TS2_2, TS3_3, TS5_1 – TS5_4, ZS2, ZS4, ZS5	TS1_1 - TS1_4, ZS1
Crangon crangon	TS3_1, TS5_1, TS5_2, TS5_4, ZS2, ZS5	TS1_3, TS_1_4
Eteone longa	TS2_1, TS3_2, TS3_4, TS5_1 – TS5_4, ZS3, ZS4	TS1_2
Hediste diversicolor	-	TS1_4, ZS1
Heteromastus filicornis	TS2_4, TS3_1, TS5_1, TS5_2, ZS2, ZS5	TS1_1 - TS1_4, ZS1
Lanice conchilega	TS3_1, TS5_2	-
Macoma balthica	TS3_1, TS3_3, TS5_1 - TS5_4, ZS2, ZS4, ZS5	TS1_1 - TS1_4, ZS1
Mya arenaria	TS2_2	TS1_2, TS1_3, ZS1
Nephtys hombergii	TS2_1, TS2_3 - TS3_4, TS5_3, ZS2, ZS4, ZS5	-
Phyllodoce mucosa	TS5_1	TS1_2, ZS1
Pygospio elegans	TS2_1, TS3_1, TS5_1 – TS5_4, ZS2 – ZS5	TS1_1 - TS1_4, ZS1
Scoloplos armiger	TS2_1 - TS3_4, TS5_1 - TS5_4, ZS2 - ZS5	-
Scrobicularia plana	-	TS1_1 – TS1_4, ZS1
Tharyx killariensis	-	TS1_1 – TS1_4, ZS1

Erläuterung:

Orange: Sand- und Mischwattarten, Grün: Sandwattarten, Blau: Mischwattarten.

5.2 Sediment

Im Untersuchungsgebiet wurden dunkles und helles Sandwatt sowie Mischwatt festgestellt. Die Laborergebnisse der Beprobung bestätigen die beschriebene Sedimentverteilung nach Figge (1981) weitestgehend (Abbildung 18). In den Proben wurden überwiegend Fein- und Feinstsande festgestellt.

5.3 Geschützte Biotope (nach § 30 BNatSchG)

Das gesamte Untersuchungsgebiet ist als "Wattflächen im Küstenbereich" einzuordnen und ist nach § 30 BNatSchG geschützt.

5.4 Fazit

- Allgemeine geringe Ähnlichkeiten der Stationen.
- Zwei Biotope grenzen sich ab: Mischwatt und Muschelbank, diese sind bezüglich der Anzahl an gefährdeten Arten als "hoch sensibel" zu bewerten.
- 17 Charakterarten, darunter sind zehn spezifisch für einen Biotoptyp.

Stand: 06.06.2023 Seite 41 von 51

- Das Ergebnis der sehr geringen Ähnlichkeit der Stationen untereinander, trotz einer hohen Transformationsrate mittels 4.ter Wurzel (= Eliminieren der "Ausreißer"), muss vor dem Hintergrund des zeitlichen Abstandes der beiden Probenahme-Kampagnen (19.-21.10.2022 und 18./19.11.2022) gesehen werden, die durch drei Sturmphasen geprägt wurden (05./06.10.2022, 16.10.2022 und 16./17.11.2022).
- Der Abstand der beiden Probenahme-Kampagnen betrug wetterbedingt vier Wochen, dies entspricht einem kompletten Mondzyklus.
- Den Kampagnen ging ein durchschnittlich heißer Sommer voraus.
- Die Kampagnen fielen in eine Jahreszeit, in der viele Benthos-Arten eine zweite postlarvale Besiedlungsphase durchleben; die bereits zum Bodenleben übergegangenen Tiere verlassen den Ort der Erstbesiedlung wieder und lassen sich mit der Strömung erneut verdriften. Dies wirkt sich auf die Abundanz-, Dominanz- und Diverstätsmuster aus. Im Herbst treten bisweilen hohe Abundanzen auf, die über denen des Sommers, vor dem ersten Larvenfall, liegen können.
- Jede sechste nachgewiesen Art gilt als "gefährdet".
- Das Ergebnis dieser Untersuchung muss daher sehr kritisch bewertet werden, da es wahrscheinlich außerhalb der Norm dieses Lebensraumes liegt.
- Es muss ferner kritisch hinterfragt werden, inwieweit die vorgefundenen Lebensgemeinschaften als "etabliert" einzustufen sind (nur etablierte Lebensgemeinschaften stellen belastbare Aussagen über mögliche baubedingte Störungen dar; Grundlage für Beweissicherungsverfahren).

5.5 Schlussbemerkung

Die Untersuchungsergebnisse werden in den umweltbezogenen Antragsanlagen für Auswirkungsprognosen und die Konfliktanalyse berücksichtigt.

Die Rohdaten des Makrozoobenthos und des Feucht- und Trockengewichtes wurden dem Auftraggeber per E-Mail übermittelt.

Stand: 06.06.2023 Seite 42 von 51

6 Literaturverzeichnis

- AG-Boden, 2005. Bodenkundliche Kartieranleitung, 5. ed. E. Schweizerbart'sche Verlagsbuchhandlung, Hannover.
- Dörjes, J., Gadow, S., Reineck, H.E., Singh, I.B., 1969. Die Rinnen der Jade (Südliche Nordsee): Sedimente und Makrozoobenthos. Senckenbergiana maritima 5–62.
- Drachenfels, O. v., 2021. Kartierschlüssel für Biotoptypen in Niedersachsen unter besonderer Berücksichtigung der gesetzlich geschützten Biotope sowie der Lebensraumtypen von Anhang I der FFH-Richtlinie, Stand März 2021, Naturschutz und Landschaftspflege in Niedersachsen. Hannover.
- Engelmann, H. D., 1978. Zur Dominanzklassifizierung von Bodenarthropoden 18, 378–380.
- Figge, K., 1981. Sedimentverteilung in der Deutschen Bucht (Blatt: 2900, Maßstab: 1:250.000). Deutsches Hydrographisches Institut, Hamburg.
- Hartmann-Schröder, G., 1996. Annelida, Borstenwürmer, Polychaeta: Die Tierwelt Deutschlands, Teil 58, 2. ed. ConchBooks, Jena, Stuttgart, Lübeck, Ulm.
- Holtmann, S.E., Groenewold, A., Schrader, K.H.M., Asjes, J., Craeymeersch, J.A., Duineveld, G.C.A., van Bostelen, A.J., van der Meer, J., 1996. Atlas of the zoobenthos of the Dutch Continental shelf. Ministry of Transport, Public Works and Water Management, North Sea Directorate, Rijswijk, NL.
- Jones, N.S., 1976. British Cumaceans: Arthropoda: Crustacea: Keys and Notes for the Identification of the Species, Synopses of the British Fauna. Academic Press, London, New York.
- Klunder, L., Lavaleye, M., Kleine-Schaars, L., Dekker, R., Holthuijsen, S., van der Veer, H.W., 2019. Distribution of the dwarf surf clam Mulinia lateralis (Say, 1822) in the Wadden Sea after first introduction. BioInvasion Rec. 8, 818–827. doi:https://doi.org/10.3391/bir.2019.8.4.10
- Lincoln, R.J., 1979. British Marine Amphipoda: Gammaridea. Natural History Museum Publications, London.
- LLUR, 2014. Neobiota in deutschen Küstengewässern Eingeschleppte und kryptogene Tier- und Pflanzenarten an der deutschen Nord- und Ostseeküste (LLUR SH Gewässer; D 25). Flintbek.
- Mertens, R., Schmidt, H., 1950. Natur und Volk (Bericht der Senckenbergischen Naturforschenden Gesellschaft), Bericht der Senckenbergischen Naturforschenden Gesellschaft. Waldemar Kramer, Frankfurt am Main.
- NLWKN, 2011. Vollzugshinweise zum Schutz der FFH-Lebensraumtypen sowie weiterer Biotoptypen mit landesweiter Bedeutung in Niedersachsen FFH-Lebensraumtypen und Biotoptypen mit Priorität für Erhaltungs- und Entwicklungsmaßnahmen Vegetationsfreies Schlick-, Sand und Mischwatt (1140), Niedersächsische Strategie zum Arten- und Biotopschutz, Hannover, 20 S., unveröff. Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN), Hannover / Niedersachsen.
- NLWKN, NLPV, 2012. Kabelverlegungen Anforderungen des NLWKN und der NLPV an Untersuchungen im niedersächsischen Küstenmeer sowie in Küsten- und Übergangsgewässern. Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz und Nationalpark Niedersächsisches Wattenmeer, Norden.
- Obenat, S., Spivak, E., Garrido, L., 2006. Life history and reproductive biology of the invasive amphipod Melita palmata (Amphipoda: Melitidae) in the Mar Chiquita coastal lagoon, Argentina. J. Mar. Biol. Assoc. U. K. 86, 1381–1387. doi:10.1017/S002531540601441X
- Rachor, E., Bönsch, R., Boos, K., Gosselck, F., Grotjahn, M., Günther, C.-P., Gusky, M., Gutow, L., Heiber, W., Jantschik, P., Krieg, H.-J., Krone, R., Nehmer, P., Reichert, K., Reiss, H., Schröder, A., Witt, J., Zettler, M.L., 2013. Rote Liste und Artenlisten der bodenlebenden wirbellosen Meerestiere, in: BfN (Hrsg.), Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 2: Meeresorganismen., Naturschutz und Biologische Vielfalt 70 (2). Landwirtschaftsverlag, Münster, S. 81–176.
- Reineck, H.-E., Behre, K.-E., Dörjes, J., Hertweck, G., Irion, G., Little-Gadow, S., Streif, H., Wunderlich, F., 1982. Das Watt Ablagerungs- und Lebensraum, 3. ed, Senckenberg-Buch. Verlag von Waldemar Kramer, Frankfurt am Main.
- Shannon, C.E., Weaver, W., 1949. Mathematical theory of communication. University of Illinois Press.

Stand: 06.06.2023 Seite 43 von 51

- Singer, A., Bijleveld, A.I., Hahner, F., Holthuijsen, S.J., Hubert, K., Kerimoglu, O., Kleine Schaars, L., Kröncke, I., Lettmann, K.A., Rittweg, T., Scheiffarth, G., van der Veer, H.W., Wurpts, A., 2023. Long-term response of coastal macrofauna communities to deeutrophication and sea level rise mediated habitat changes (1980s versus 2018). Front. Mar. Sci. 9, 20. doi:10.3389/fmars.2022.963325
- Stecher, J., 1999. Die Lebensgemeinschaften des Seegats der Otzumer Balje in Abhängigkeit von morphodynamischen Prozessen. (Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften). Universität Bremen, Bremen.
- Thorson, G., 1946. Reproduction and larval development of Danish marine bottom invertebrates: with special reference to the planktonic larvae in the Sound (Øresund); with a section on Lamellibranch larvae, Meddelelser fra Kommissionen for Danmarks fiskeri- og havundersøgelser. Serie Plankton. C.A. Reitzel, København.
- Willmann, R., 1989. Muscheln & Schnecken der Nord- und Ostsee, NJN Naturführer. Neumann-Neudamm.
- Ziegelmeier, E., 1952. Beobachtungen über den Röhrenbau von Lanice conchilega (Pallas) im Experiment und am natürlichen Standort. Helgoländer Wiss. Meeresunters. 4, 107–129. doi:10.1007/BF02178540

Projekt-Nr.: Kurztitel: 1466 ",NOR-12-1, NO NOR-13-1" Benthos Erfassi Wattkartierung	Dr. M. Stamm,	Prüfer: D. Wolters	Datum: RevNr.: 1-0	Geprüft Moldek
--	---------------	-----------------------	--------------------	-----------------

Stand: 06.06.2023 Seite 44 von 51

7 Anhang

Foto 1: Zählrahmen ZR_01

Foto 2: Zählrahmen ZR_02

Stand: 06.06.2023 Seite 38 von 51

Foto 3: Zählrahmen ZR_03

Foto 4: Zählrahmen ZR_04

Stand: 06.06.2023 Seite 39 von 51

Foto 5: Zählrahmen ZR_05

Foto 6: Zählrahmen ZR_06

Stand: 06.06.2023 Seite 40 von 51

Foto 7: Zählrahmen ZR_07

Foto 8: Zählrahmen ZR_08

Stand: 06.06.2023 Seite 41 von 51

Foto 9: Zählrahmen ZR_09

Foto 10: Zählrahmen ZR_10

Stand: 06.06.2023 Seite 42 von 51

Foto 11: Zählrahmen ZR_11

Foto 12: Zählrahmen ZR_12

Stand: 06.06.2023 Seite 43 von 51

Foto 13: Zählrahmen ZR_13

Foto 14: Zählrahmen ZR_14

Stand: 06.06.2023 Seite 44 von 51

Foto 15: Zählrahmen ZR_15

Foto 16: Zählrahmen ZR_16

Stand: 06.06.2023 Seite 45 von 51

Foto 17: Zählrahmen ZR_17

Foto 18: Zählrahmen ZR_18

Stand: 06.06.2023 Seite 46 von 51

Foto 19: Zählrahmen ZR_19

Foto 20: Zählrahmen ZR_20

Stand: 06.06.2023 Seite 47 von 51

Foto 21: Zählrahmen ZR_21

Foto 22: Zählrahmen ZR_22

Stand: 06.06.2023 Seite 48 von 51

Foto 23: Zählrahmen ZR_23

Foto 24: Zählrahmen ZR_24

Stand: 06.06.2023 Seite 49 von 51

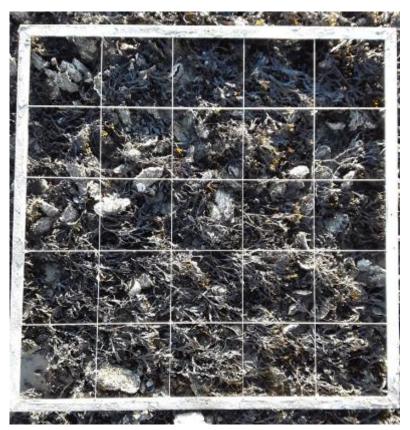


Foto 25: Zählrahmen ZR_25

Stand: 06.06.2023 Seite 50 von 51

8 Glossar

Begriff	Erklärung	Anmerkung
Makrozoobenthos	"Das Makrozoobenthos besteht aus den wirbellosen tierischen Organismen, die die Gewässersohle besiedeln. Würmer, Schne- cken, Muscheln sowie Krebstiere (…) prägen die Besiedlung."	https://www.lanuv.nrw.de/um- welt/wasser/gewaesseroekolo- gie/benthische-wirbellose-fauna
	Das Maktozoobenthos (MZB) wird auch als benthische wirbellose Fauna oder kurz mit Benthos beschrieben.	
Benthos	Siehe Makrozoobenthos	
Taxon	Plural Taxa, eine systematische (taxonomische) Gruppe, d.h. eine Einheit des biologischen Systems (Systematik, Taxonomie, Klassifikation, Nomenklatur), z.B. "(die Art) Homo sapiens", "(die Gattung) Leo", "(der Stamm) Arthropoda". Dabei sind "Art", "Gattung", "Familie" usw. keine Taxa, sondern deren jeweilige Kategorie. In der phylogenetischen Systematik werden 2 Typen von Taxa unterschieden: Das Art-Taxon, als Äquivalent einer geschlossenen Fortpflanzungsgemeinschaft, und das supraspezifische Taxon, als Äquivalent einer geschlossenen Abstammungsgemeinschaft.	https://www.spektrum.de/lexi- kon/biologie/taxon/65570
Annelida	Ringelwürmer, Gliederwürmer	
Polychaet	Vielborster (Gruppe der Glieder-Würmer)	
Mollusca	Muscheltiere	
Crustacea	Krebstiere	
Oligochaet	Wenigborster (Gruppe der Glieder-Würmer)	
Phoronida	Hufeisenwürmer	
Abundanz	Die Abundanz, auch Dichte, Häufigkeit oder Mengengrad, be- zeichnet in der Ökologie die Anzahl der Individuen einer Art, be- zogen auf ihr Habitat.	Siehe auch http://www.biologie- lexikon.de/
Biomasse	Als Biomasse wird die Stoffmasse von Lebewesen oder deren Körperteilen bezeichnet. Diese Stoffgemische werden mithilfe ihrer Masse quantifiziert. In der Ökologie wird die Biomasse häufig nur für ausgesuchte, räumlich klar umrissene Ökosysteme oder nur für bestimmte, einzelne Populationen erfasst.	Siehe auch http://www.biologie- lexikon.de/
Individuendichte	Individuendichte w, Individuenabundanz, Anzahl der Individuen einer Art in einem bestimmten Biotop. Ordnet man die Arten anhand ihrer relativen Individuendichte (Dominanzgrad; Dominanz) in einer Rangfolge, ergibt die logarithmische Darstellung der Artendichten gegen den Rang ein charakteristisches Artenabundanz-Muster (Arten-Rang-Relation)	https://www.spektrum.de/lexi- kon/biologie/individuen- dichte/33964
Median	Der Wert, der genau in der Mitte einer Datenverteilung liegt, nennt sich Median oder Zentralwert. Die eine Hälfte aller Indivi- dualdaten ist immer kleiner, die andere größer als der Median. Bei einer geraden Anzahl von Individualdaten ist der Median die Hälfte der Summe der beiden in der Mitte liegenden Werte.	https://de.statista.com/statis- tik/lexikon/definition/85/median/
Feuchtgewicht	Gewichtsprozent, korrektere Bezeichnung Massenprozent, die Anzahl von Gramm (oder kg) einer Substanz, die in 100 g (oder kg) eines Gemisches enthalten ist. In biologischen Systemen muß häufig unterschieden werden zwischen Gewichtsprozent, bezogen auf Feuchtgewicht, und Gewichtsprozent, bezogen auf Trockengewicht.	https://www.spektrum.de/lexi- kon/biologie/gewichtspro- zent/27911
Mittelwert	Der Mittelwert beschreibt den statistischen Durchschnittswert und zählt zu den Lageparametern in der Statistik. Für den Mittelwert addiert man alle Werte eines Datensatzes und teilt die Summe durch die Anzahl aller Werte.	https://de.statista.com/statis- tik/lexikon/definition/91/mittel- wert_und_arithmetisches_mitte
Standardabweichung	Die Standardabweichung ist ein Maß für die Streubreite der Werte eines Merkmals rund um dessen Mittelwert (arithmetisches Mittel). Vereinfacht gesagt, ist die Standardabweichung die durchschnittliche Entfernung aller gemessenen Ausprägungen eines Merkmals vom Durchschnitt.	https://de.statista.com/statis- tik/lexikon/definition/126/stan- dardabweichung/
Bivalvia	Muscheln, wasserlebende und mit Kiemen atmende Schalen- weichtiere mit zweiklappiger Schale	
Cluster	Als Cluster (gelegentlich auch mit Ballungen, Haufen, Klumpen beschrieben) bezeichnet man in der Informatik und Statistik eine Gruppe von Datenobjekten mit ähnlichen Eigenschaften.	https://www.wortbedeu- tung.info/Cluster/

Stand: 06.06.2023 Seite 51 von 51