TÜV NORD EnSys GmbH & Co. KG

Energie- und Systemtechnik

Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt

Erstellt im Auftrag für

Ebersdorfer Bioenergie GmbH & Co. KG

Ebersdorf

Revision 0

Hamburg, 30.03.2022

Revision	Datum	Änderung
0	30.03.2022	Erste Ausgabe

Seite 2 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Gegenstand: Gutachtliche Stellungnahme zur Schallimmissions-

prognose für den Windpark Ebersdorf-Alfstedt

Referenz-Nr.: 2021-WND-SL-013-R0

Auftraggeber: Ebersdorfer Bioenergie GmbH & Co. KG

Hauptstraße 41 27432 Ebersdorf

Anlagenhersteller: Nordex SE

Langenhorner Chaussee 600 22419 Hamburg, Deutschland

WEA-Typ	P _{Nenn} [MW]	D [m]	NH [m]
Nordex N163/6.X STE	6,8	163,0	164,0

Vom Auftraggeber eingereichte Unterlagen /15/:

- Windenergieanlagen-Spezifikationen inkl. jeweiliger Angabe zu Nabenhöhe, Rotordurchmesser und Nennleistung der geplanten Windenergieanlagen mit Koordinaten (UTM, ETRS89, Zone 32)
- Lageplan

Seite 3 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Die Ausarbeitung der gutachtlichen Stellungnahme erfolgte durch:

Verfasser	DiplIng (FH) Lars Zieren Sachverständiger	Hamburg, 30.03.2022
Geprüft durch	Dr. rer. nat. Rasmus Fischer Sachverständiger	Hamburg, 30.03.2022

Für weitere Auskünfte:

TÜV NORD EnSys GmbH & Co. KG

L. Zieren

Große Bahnstraße 31

22525 Hamburg

Tel.: +49 40 8557 2156

Fax: +49 40 8557 2552

E-Mail: Izieren@tuev-nord.de

Seite 4 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Inhaltsverzeichnis

1	Auf	gabenstellung	5
2		nittlung und Berechnung der schalltechnischen Immissionen von ndenergieanlagen	5
	2.1	Vorgehensweise bei der Ermittlung von Immissionen	5
	2.2	Berechnungsgrundlage	6
	2.3	Immissionsrichtwerte	7
	2.4	Genehmigungsfähigkeit	7
	2.5	Tieffrequente Geräusche/ Infraschall	8
3	Sch	nallimmissionsgrundlagen	8
	3.1	Lage der Windenergieanlagen und Immissionspunkte	8
	3.2	Vorbelastung	. 14
	3.3	Zusatzbelastung	. 17
4	Erg	ebnisse	. 18
	4.1	Qualität der Prognose (oberer Vertrauensbereich)	. 18
	4.1	1 Berechnung der Prognoseunsicherheit mit der Gesamtunsicherheit σGes und die Berechnung der oberen Vertrauensbereichsgrenze L _o	
	4.2	Vor-, Zusatz- und Gesamtbelastung inklusive des oberen Vertrauensbereichs gemäß /1/	
5	Zus	ammenfassung und Bewertung	. 22
6	Lite	eratur- und Quellenangaben	. 24
7	For	melzeichen und Abkürzungen	. 27
8	Anl	nang	. 28
	8.1	Detaillierte Berechnungsergebnisse	. 28
	8.2	Lageplan der Immissionspunkte	. 78

Seite 5 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

1 Aufgabenstellung

Im Rahmen der Errichtung von einer Windenergieanlage (WEA) vom Typ Nordex N163 6.X STE, 6,8 MW (WEA 01) mit 164,0 m Nabenhöhe (NH) und 163,0 m Rotordurchmesser (D) am Standort Ebersdorf-Alfstedt (Niedersachsen) ist die TÜV NORD EnSys GmbH & Co. KG von der Ebersdorfer Bioenergie GmbH & Co. KG mit der Durchführung einer Schallimmissionsprognose beauftragt worden. Als Vorbelastung sind 41 bestehende WEA (WEA 02 bis 42) in der Umgebung der geplanten WEA zu berücksichtigen /16/. Weiterhin sind die Blockheizkraftwerke (BHKW) 01 bis 10 in der Umgebung der geplanten WEA als eventuelle Vorbelastung in Betracht zu ziehen.

Hierzu werden für den Tag- und Nachtbetrieb der geplanten WEA 01 der Betriebsmodus 0 s /17/ angenommen.

Die Berechnungen der Immissionsprognose werden entsprechend der Technischen Anleitung zum Schutz gegen Lärm - TA Lärm /1/, nach DIN ISO 9613-2 /4/ durchgeführt. Gemäß den Empfehlungen der Bund / Länderarbeitsgemeinschaft Immissionsschutz (LAI) /2/ wird für die Prognose der Geräuschimmissionen von WEA das in /3/ festgelegte modifizierte Verfahren der DIN ISO 9613-2 /4/ angewendet ("Interimsverfahren zur Prognose der Geräuschimmissionen von Windkraftanlagen").

Im Rahmen der Schallimmissionsprognose erfolgte gemäß den Vorgaben der LAI /2/ eine Standortbesichtigung. Diese wurde durch den Mitarbeiter der TÜV NORD EnSys GmbH & Co. KG, Herrn Weiß am 11.10.2021 durchgeführt.

Die Koordinaten und Spezifikationen der geplanten WEA sind durch den Auftraggeber übermittelt /15/ (siehe Tabelle 3). Die Koordinaten und Spezifikationen, sowie die anzunehmenden Schallleistungspegel nebst Oktavspektren der zu berücksichtigenden Vorbelastung durch WEA sowie die anzunehmenden Pegel der zu berücksichtigenden Blockheizkraftwerke (BHKW) wurden mit /18/ von der genehmigenden Behörde als Download zur Verfügung gestellt. Immissionspunkte (IP) und anzunehmenden Immissionsrichtwerte (IRW) wurden ebenfalls /16/ entnommen und vom Auftragnehmer durch weitere IP auf der Grundlage des ermittelten Einwirkungsbereichs ergänzt und während durchgeführten Standortbesichtigung verifiziert und ggf. angepasst (siehe Tabelle 5).

2 Ermittlung und Berechnung der schalltechnischen Immissionen von Windenergieanlagen

2.1 Vorgehensweise bei der Ermittlung von Immissionen

Die Ermittlung sowie die Beurteilung der Geräusche von WEA erfolgen nach den Festlegungen der TA Lärm /1/. Die TA Lärm ist ebenfalls stets im Rahmen von

Seite 6 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Beschwerdefällen zur Erfassung und Beurteilung der Geräuscheinwirkungen anzuwenden.

Gemäß den Anforderungen der TA Lärm sind der Schallleistungspegel und das zugehörige Oktavspektrum zu verwenden, die derjenigen bestimmungsgemäßen Betriebsart entsprechen, die im Einwirkungsbereich die höchsten Beurteilungspegel erzeugt.

Um eine Sicherstellung der Nichtüberschreitung der IRW durch eine Schallimmissionsprognose nachzuweisen und zu gewährleisten, ist eine guantitative Auswertung, sowie eine Bewertung der Qualität der erhobenen Emissionsdaten der WEA notwendig. Die Ergebnisse einer erfolgten Mehrfachvermessung eines WEA-Typs und der daraus ermittelte mittlere Schallleistungspegel sowie das zugehörige Oktavspektrum sind bei einer Prognose gegenüber den entsprechenden Ergebnissen einer Einfachvermessung sowie den Angaben des WEA-Herstellers bevorzugt anzuwenden.

Die Ermittlung der Geräuschimmissionen durch Prognosen kann nach TA Lärm /1/ durch zwei Verfahren erfolgen:

- die überschlägige Prognose,
- die detaillierte Prognose.

In der überschlägigen Prognose werden in den Ergebnissen die Schallausbreitungsverluste infolge der Luftabsorption und weitgehend alle Abschirmungseffekte der Bodendämpfung vernachlässigt.

2.2 Berechnungsgrundlage

der TA Lärm, Anhang A 2.3 Entsprechend /1/ ist eine Schallausbreitungsrechnung nach DIN ISO 9613-2 /4/ durchgeführt worden. Gemäß den Empfehlungen der LAI wurde für die Prognose der Geräuschimmissionen von WEA das in /3/ festgelegte modifizierte Verfahren der DIN ISO 9613-2 /4/ angewendet. Die Dämpfung aufgrund des Bodeneffekts wurde dabei konstant auf -3 dB gesetzt. Die Prognose von Geräuschimmissionen ggf. vorhandener bodennaher Schallquellen (bis 30 m über Grund) erfolgte nach DIN ISO 9613-2 "alternatives Verfahren zur Berechnung A-bewerteter Schalldruckpegel" /4/. günstigsten Berücksichtigung fanden zudem die Orografie die und Schallausbreitungsbedingungen, bei einer Temperatur von 10 °C und einer Luftfeuchtigkeit von 70 % unter "Mitwindbedingungen" /2/. Die Meteorologische Korrektur \mathcal{C}_{met} wurde daher mit 0 dB angenommen /3/. Weitere Faktoren wie pflanzlicher Bewuchs und Bebauung die zu einer Abschirmung, Reflexionen und Dämpfung führen, wurden bei den Berechnungen nicht berücksichtigt. Die Berechnungen zur Schallimmissionsprognose am Standort wurden mit Hilfe der Software WindPRO Version 3.5 /7/ durchgeführt.

Seite 7 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2.3 Immissionsrichtwerte

Die in der TA-Lärm /1/ genannten IRW für IP außerhalb von Gebäuden werden für die schalltechnische Beurteilung herangezogen (siehe Tabelle 1).

Nutrung	IRW			
Nutzung	Tag [dB(A)]	Nacht [dB(A)]		
Industriegebiete	70	70		
Gewerbegebiete	65	50		
Kern-, Dorf- und Mischgebiete	60	45		
allgem. Wohngebiete & Kleinsiedlungsgebiete	55	40		
reine Wohngebiete	50	35		
Kurgebiete, für Krankenhäuser und Pflegeanstalten	45	35		

Tabelle 1: IRW für IP außerhalb von Gebäuden.

Nach TA Lärm /1/ bezieht sich der IRW Tag auf die Zeit von 6.00 - 22.00 Uhr und der IRW Nacht auf die Zeit von 22.00 - 6.00 Uhr.

2.4 Genehmigungsfähigkeit

Eine Genehmigung ist nach TA Lärm /1/ nicht zu versagen, wenn die Gesamtbelastung (inkl. Industrie- u. Gewerbegebieten) am maßgeblichen Immissionsort den IRW nicht überschreitet.

Die Genehmigung für die zu beurteilende WEA darf nach TA Lärm /1/ auch bei einer Überschreitung der Immissionsrichtwerte aufgrund der Vorbelastung aus Gründen des Lärmschutzes nicht versagt werden, wenn der von der Anlage verursachte Immissionsbeitrag im Hinblick auf den Gesetzeszweck als nicht relevant anzusehen ist. Das ist in der Regel der Fall, wenn die von der zu beurteilenden Anlage ausgehende Zusatzbelastung den IRW am maßgeblichen Immissionsort um mindestens 6 dB(A) unterschreitet.

Für die zu beurteilende WEA soll gemäß TA Lärm /1/ die Genehmigung wegen einer Überschreitung des IRW aufgrund der Vorbelastung auch dann nicht versagt werden, wenn dauerhaft sichergestellt ist, dass diese Überschreitung nicht mehr als 1 dB(A) beträgt.

In Tabelle 2 sind die Kriterien zur Genehmigungsfähigkeit nach /1/ dargestellt.

Seite 8 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Belastung	Genehmigungsfähigkeit
Gesamtbelastung (inkl. Industrie- u. Gewerbegebieten)	≤IRW
Zusatzbelastung	≤ (IRW - 6 dB(A))
Relevante Vorbelastung zzgl. Zusatzbelastung (Zusatzbelastung ≤ IRW)	≤ (IRW + 1 dB(A))

Tabelle 2: Genehmigungsfähigkeit nach /1/.

2.5 Tieffrequente Geräusche/Infraschall

Als tieffrequent werden Geräusche mit vorherrschenden Anteilen im Frequenzbereich unterhalb von 90 Hz bezeichnet. Liegen vorherrschende Geräuschanteile im Frequenzbereich unterhalb von 20 Hz vor, so spricht man von Infraschall. Der Infraschall stellt somit den untersten Bereich im Spektrum der tieffrequenten Geräusch dar. Generell gilt, dass mit abnehmender Frequenz ein zunehmender Schalldruck notwendig ist, um die Hörbarkeits-, bzw. die Wahrnehmbarkeitsschwelle des Menschen zu erreichen.

Infraschall ist ein alltäglicher Bestandteil unserer Umwelt und wird von einer großen Anzahl von Schallquellen, wie z. B. auch vom Wind selbst oder von Heizungs- und Klimaanlagen sowie von Straßen- und Schienenverkehr erzeugt. WEA erzeugen in Abhängigkeit von der Windgeschwindigkeit Geräusche im gesamten also ebenso im tieffrequenten Frequenzbereich, u. U. Frequenzbereich, hervorgerufen durch Verwirbelungen oder Wirbelablösungen. Sie sind vergleichbar mit denen anderer technischer Anlagen.

Laut /2/ liegt die Infraschallerzeugung moderner WEA selbst im Nahbereich bei Abständen zwischen 150 und 300 m deutlich unterhalb der menschlichen Wahrnehmungsschwelle. Gesundheitsschäden und erhebliche Belästigungen sind damit nach derzeitigem Erkenntnisstand nicht zu erwarten.

Die den geplanten WEA am nächsten gelegenen Wohnbebauungen liegen deutlich außerhalb des oben genannten 300 m Umkreises.

3 Schallimmissionsgrundlagen

3.1 Lage der Windenergieanlagen und Immissionspunkte

Die vom Auftraggeber eingereichte Konfiguration der geplanten WEA 01 /15/ und die Angaben aus dem Fremdgutachten, das über das niedersächsische UVP-Portal bezogen wurde /16/, zu weiteren, zu berücksichtigenden WEA sind in Tabelle 3 dargestellt. Die Bezeichnungen der einzelnen WEA in dieser gutachtlichen

Seite 9 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Stellungnahme beziehen sich auf die fortlaufende Nummer, die ebenfalls aus Tabelle **3** ersichtlich ist. Die WEA 17 bis 19 sowie 23 waren zum Zeitpunkt der durchgeführten Standortbesichtigung bereits zurückgebaut und wurden folglich im weiteren Verlauf nicht berücksichtigt. Weitere, bodennahe Schallquellen, die als Vorbelastung zu berücksichtigen sind, sind in der Tabelle 4 aufgeführt /16/.

L	fd.	WEA-	Koordin	aten [m]				NILI	
	EA- Nr.	Bezeich- nung	Rechts- wert	Hoch- wert	WEA-Typ	P _{Nenn} [MW]	D [m]	NH [m]	
Ge	plante	WEA im Wind	park Ebers	dorf-Alfste	dt				
	01	WEA 01, Var5	501718	5932638	Nordex N163/6.X STE, nachts Mode 0	6,8	163,0	164,0	
We	itere '	WEA in der Um	gebung de	r geplanter	n WEA				
	02	WEA 01	502202	5932417	GE 5.3-158	5,3	158,0	161,0	
	03	WEA 02	502433	5932740	GE 5.3-158	5,3	158,0	161,0	
	04	WEA 03	502486	5933153	GE5.3-158	5,3	158,0	161,0	
	05	WEA 04	502118	5932991	GE 5.3-158	5,3	158,0	161,0	
	06	WEA 05	501968	5933356	GE 5.3-158	5,3	158,0	161,0	
	07	WEA 06	501724	5933035	GE 5.3-158	5,3	158,0	161,0	
	08	WEA 07	501506	5933371	GE 5.3-158	5,3	158,0	161,0	
1	09	WEA 08	501082	5933389	GE 5.3-158	5,3	158,0	161,0	
\bigcirc	10	WEA 09	501297	5932997	ENERCON E-138 EP3 E2	4,2	138,3	160,0	
\bigcirc	11	WEA 10	500708	5933262	ENERCON E-138 EP3 E2	4,2	138,3	160,0	
\bigcirc	12	WEA 11	500948	5932867	ENERCON E-138 EP3 E2	4,2	138,3	160,0	
\bigcirc	13	WEA 12	500577	5932963	ENERCON E-138 EP3 E2	4,2	138,3	160,0	
\bigcirc	14	WEA A 1	503890	5934732	ENERCON E-40/5.40	0,5	40,3	65,0	
\bigcirc	15	WEA A 2	503874	5934437	ENERCON E-40/5.40	0,5	40,3	65,0	
\bigcirc	16	WEA A 3	503860	5934226	ENERCON E-40/5.40	0,5	40,3	65,0	
	17 ^{*)}	WEA A 4	503607	5934323	Tacke TW 600	0,6	46,0	50,0	
	18 ^{*)}	WEA A 5	503554	5934008	Tacke TW 600	0,6	46,0	50,0	
\bigcirc	19 ^{*)}	WEA A 6	503541	5933818	Tacke TW 600	0,6	46,0	50,0	
\bigcirc	20	WEA A 7	503631	5934587	ENERCON E-101	3,0	101,0	99,0	

Seite 10 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Lfd.		WEA-	Koordin	aten [m]		В	2	NH
	EA- \r.	Bezeich- nung	Rechts- wert	Hoch- wert	WEA-Typ	P _{Nenn} [MW]	D [m]	[m]
lack	21	BWEA 1	499993	5933806	ENERCON E-40/6.44	0,6	44,0	50,0
\bigcirc	22	BWEA 2	500131	5933628	ENERCON E-40/6.44	0,6	44,0	50,0
\bigcirc	23*)	BWEA 4	500364	5932690	ENERCON E-48	8,0	48,0	64,6
\bigcirc	24	BWEA 5	500161	5932619	ENERCON E-40/6.44	0,6	44,0	50,0
\bigcirc	25	BWEA 6	500033	5932484	ENERCON E-40/6.44	0,6	44,0	50,0
\bigcirc	26	BWEA 7	499905	5932350	ENERCON E-40/6.44	0,6	44,0	50,0
\bigcirc	27	WEA K01	497179	5933250	ENERCON E-101	3,0	101,0	149,0
\bigcirc	28	WEA K02	496913	5932987	ENERCON E-101	3,0	101,0	149,0
\bigoplus	29	WEA K03	497579	5933018	ENERCON E-101	3,0	101,0	149,0
lack	30	WEA K04	496987	5932670	ENERCON E-101	3,0	101,0	149,0
lack	31	WEA K05	497541	5932563	ENERCON E-101	3,0	101,0	149,0
\bigcirc	32	WEA K06	496604	5932537	ENERCON E-101	3,0	101,0	149,0
\bigcirc	33	WEA K08	496858	5932258	ENERCON E-101	3,0	101,0	149,0
\bigcirc	34	WEA K09	495929	5932209	ENERCON E-101	3,0	101,0	149,0
\bigcirc	35	WEA K10	497900	5932203	ENERCON E-101	3,0	101,0	149,0
lack	36	WEA K11	498332	5932175	ENERCON E-101	3,0	101,0	149,0
\bigcirc	37	WEA K12	496281	5931995	ENERCON E-101	3,0	101,0	149,0
\bigcirc	38	WEA K13	497441	5931985	ENERCON E-101	3,0	101,0	149,0
\bigcirc	39	WEA K14	495891	5931847	ENERCON E-101	3,0	101,0	149,0
\bigcirc	40	WEA K15	497855	5931837	ENERCON E-101	3,0	101,0	149,0
\bigcirc	41	WEA K18	497280	5931567	ENERCON E-101	3,0	101,0	149,0
lack	42	WEA K19	497677	5931459	ENERCON E-101	3,0	101,0	149,0

Tabelle 3: Windparkkonfiguration (Koordinatensystem: UTM, ETRS89, Zone 32) /15/, /16/. *) WEA zurückgebaut.

Seite 11 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

	fd.		Koordin	aten [m]		Höhe
	Nr.	Bezeich- nung	Rechts- wert	Hoch- wert	Art der Schallquelle	über Grund [m]
ВН	BHKW in der Umgebung der geplanten WEA					
	01	BHKW 01	503214	5931767	Blockheizkraftwerk	5,0
	02	BHKW 02	504615	5932471	Blockheizkraftwerk	5,0
	03	BHKW 03	504287	5930364	Blockheizkraftwerk	5,0
	04	BHKW 04	500683	5931288	Blockheizkraftwerk	5,0
	05	BHKW 05	503387	5931093	Blockheizkraftwerk	5,0
	06	BHKW 06	503118	5930958	Blockheizkraftwerk	5,0
	07	BHKW 07	502712	5930554	Blockheizkraftwerk	5,0
	08	BHKW 08	503243	5930530	Blockheizkraftwerk	5,0
	09	BHKW 09	503650	5930452	Blockheizkraftwerk	5,0
	10	BHKW 10	502714	5930540	Blockheizkraftwerk	5,0

Tabelle 4: Weitere, bodennahe Schallquellen (Koordinatensystem: UTM, ETRS89, Zone 32) /16/.

Der Lage der WEA im Windpark Ebersdorf-Alfstedt ist in Abbildung 1 dargestellt.

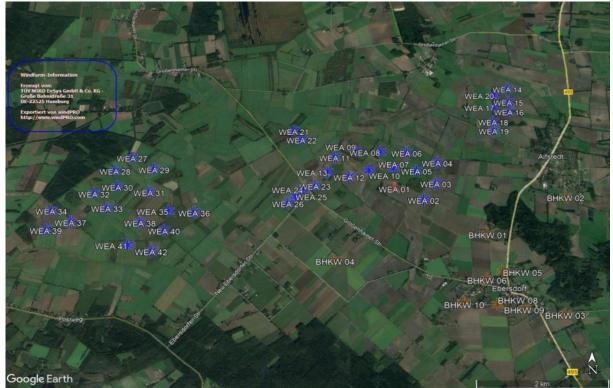


Abbildung 1: Lage der geplanten und bestehenden WEA im Windpark Ebersdorf-Alfstedt, Symbole und Beschriftungen aus /7/, Luftbild aus /8/. Die Bezeichnung der WEA und BHKW bezieht sich auf die Spalte "Lfd. WEA-Nr." in Tabelle 3, bzw. auf die Spalte "Lfd. Nr." in Tabelle 4.

Seite 12 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Laut /1/ wird der Einwirkungsbereich einer Anlage durch die Flächen gebildet, in denen die von der Anlage ausgehenden Geräusche einen Beurteilungspegel verursachen, der weniger als 10 dB(A) unterhalb des für diese Flächen maßgebenden Immissionsrichtwertes liegt.

In Abbildung 2 sind die nächtlichen Einwirkungsbereiche des geplanten Windparks Ebersdorf-Alfstedt bzgl. Außenbereichen sowie Kern-, Dorf- und Mischgebieten (35 dB(A) – Isophone, violett), allgemeinen Wohngebieten (30 dB(A) – Isophone, türkisfarben) und reinen Wohngebieten (25 dB(A) – Isophone, hellgrün) gemäß /1/ dargestellt.

Abbildung 2: Nächtliche Einwirkungsbereiche gemäß /1/ der geplanten WEA im Windpark Ebersdorf-Alfstedt.

violett: 35 dB(A) – Isophone (Dorf-, Kern- und Mischgebiete sowie Außenbereiche)

türkisfarben: 30 dB(A) – Isophone (allgemeine Wohngebiete)

hellgrün: 25 dB(A) – Isophone (reine Wohngebiete). Symbole und Beschriftungen aus /7/, Luftbild aus /8/.

Ausgehend von den in Abbildung 3 dargestellten Einwirkungsbereichen der geplanten Zusatzbelastung im Windpark Ebersdorf-Alfstedt werden als IP 22 Standorte berücksichtigt (vgl. Tabelle 5). Die zu berücksichtigenden IP und die anzunehmenden IRW wurden /16/ entnommen und weitere IP auf Basis des ermittelten Einwirkungsbereichs der geplanten WEA vom Auftragnehmer angenommen und während der durchgeführten Standortbesichtigung und mit Hilfe

Seite 13 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

von topografischen Karten /8/ sowie Geodaten /13/ verifiziert und ggf. angepasst (siehe Tabelle 5). Die Lage der IP ist im Anhang (Kapitel 8.1) dargestellt.

Die Schallimmissionsprognose wird entsprechend des in Kapitel 2 beschriebenen Verfahrens durchgeführt.

in.	Doctoliacho Donoichana	Gebiets-	Koordinaten		
IP	Postalische Bezeichnung	einstufung	Rechts	Hoch	
01	Moorweg 4, Armstorf	Außenbereich	501543	5935093	
02	Moorweg 2, Armstorf	Außenbereich	501794	5935074	
03	Schützenstraße 1, Armstorf	Reines Wohngebiet	502455	5936060	
04	Im Tal 2, Armstorf	Allgemeines Wohngebiet	502511	5935962	
05	Neulandweg 2, Alfstedt	Außenbereich	503093	5934320	
06	Neulandweg 1A, Alfstedt	Außenbereich	503089	5934077	
07	Teelstraße 34, Alfstedt	Außenbereich	503258	5933918	
08	Teelstraße 25, Alfstedt	Außenbereich	503708	5933555	
09	Rosenweg 7, Alfstedt	Allgemeines Wohngebiet	504550	5933358	
10	Heidtrift 1, Alfstedt	Außenbereich	503418	5932633	
11	Höpen 39, Ebersdorf	Außenbereich	503310	5931980	
12	Höpen 2, Ebersdorf	Außenbereich	503426	5931685	
13	Binnenfeld 30, Ebersdorf	Allgemeines Wohngebiet	503207	5931023	
14	Westring 25, Ebersdorf	Allgemeines Wohngebiet	502686	5930926	
15	Westerbeck 9, Ebersdorf	Außenbereich	502543	5931463	
16	Buchenweg 1, Ebersdorf	Außenbereich	501103	5931750	
17	Feldstraße 10, Ebersdorf	Allgemeines Wohngebiet	499418	5931214	
18	Großenhainer Straße 28, Ebersdorf	Außenbereich	499720	5933494	
19	Großenhainer Straße 10, Armstorf	Außenbereich	499834	5934697	
20	Schützenstraße 24, Geestland	Allgemeines Wohngebiet	498616	5935327	
21	Wiesengrund 4, Hipstedt	Reines Wohngebiet	497682	5930304	
22	Großenhainer Straße 35, Ebersdorf	Außenbereich	501077	5931846	

 Tabelle 5:
 Immissionspunkte (Koordinatensystem: UTM, ETRS89, Zone 32).

Seite 14 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Die Höhe der IP über Grund wird jeweils mit 5,0 m angenommen.

3.2 Vorbelastung

Am Standort Ebersdorf-Alfstedt sind 37 verbleibende WEA (WEA 02 bis 16, 20 bis 22 und 24 bis 42) als Vorbelastung zu berücksichtigen. Des Weiteren sind 10 BHKW als Vorbelastung zu berücksichtigen.

Die anzunehmenden Schalleistungspegel der als Vorbelastung am Standort Ebersdorf-Alfstedt zu berücksichtigenden WEA sind in Tabelle 6 dargestellt.

Die anzunehmenden Schalleistungspegel der als Vorbelastung am Standort Ebersdorf-Alfstedt zu berücksichtigenden sonstigen Anlagen und Betriebe sind in Tabelle 6 dargestellt.

Lfd. WEA- Nr.	WEA-Typ	PNenn [MW]	D [m]	NH [m]	LWA Tag [dB(A)]	LWA Nacht [dB(A)]
02	GE 5.3-158	5,3	158,0	161,0	106,0	105,0
03	GE 5.3-158	5,3	158,0	161,0	106,0	102,0
04	GE5.3-158	5,3	158,0	161,0	106,0	102,0
05	GE 5.3-158	5,3	158,0	161,0	106,0	102,0
06	GE 5.3-158	5,3	158,0	161,0	106,0	102,0
07	GE 5.3-158	5,3	158,0	161,0	106,0	105,0
08	GE 5.3-158	5,3	158,0	161,0	106,0	105,0
09	GE 5.3-158	5,3	158,0	161,0	106,0	106,0
10	ENERCON E-138 EP3 E2	4,2	138,3	160,0	106,0	104,0
11	ENERCON E-138 EP3 E2	4,2	138,3	160,0	106,0	104,0
12	ENERCON E-138 EP3 E2	4,2	138,3	160,0	106,0	104,0
13	ENERCON E-138 EP3 E2	4,2	138,3	160,0	106,0	104,0
14	ENERCON E-40/5.40	0,5	40,3	65,0	102,0	102,0
15	ENERCON E-40/5.40	0,5	40,3	65,0	102,0	102,0
16	ENERCON E-40/5.40	0,5	40,3	65,0	102,0	102,0
20	ENERCON E-101	3,0	101,0	99,0	106,5	106,5
21	ENERCON E-40/6.44	0,6	44,0	50,0	101,0	101,0

Seite 15 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Lfd. WEA- Nr.	WEA-Typ	PNenn [MW]	D [m]	NH [m]	LWA Tag [dB(A)]	LWA Nacht [dB(A)]
22	ENERCON E-40/6.44	0,6	44,0	50,0	101,0	101,0
24	ENERCON E-40/6.44	0,6	44,0	50,0	101,0	101,0
25	ENERCON E-40/6.44	0,6	44,0	50,0	101,0	101,0
26	ENERCON E-40/6.44	0,6	44,0	50,0	101,0	101,0
27	ENERCON E-101	3,0	101,0	149,0	106,0	106,0
28	ENERCON E-101	3,0	101,0	149,0	106,0	106,0
29	ENERCON E-101	3,0	101,0	149,0	106,0	106,0
30	ENERCON E-101	3,0	101,0	149,0	106,0	106,0
31	ENERCON E-101	3,0	101,0	149,0	106,0	106,0
32	ENERCON E-101	3,0	101,0	149,0	106,0	106,0
33	ENERCON E-101	3,0	101,0	149,0	106,0	106,0
34	ENERCON E-101	3,0	101,0	149,0	106,0	104,0
35	ENERCON E-101	3,0	101,0	149,0	106,0	106,0
36	ENERCON E-101	3,0	101,0	149,0	106,0	106,0
37	ENERCON E-101	3,0	101,0	149,0	106,0	106,0
38	ENERCON E-101	3,0	101,0	149,0	106,0	106,0
39	ENERCON E-101	3,0	101,0	149,0	106,0	99,0
40	ENERCON E-101	3,0	101,0	149,0	106,0	102,0
41	ENERCON E-101	3,0	101,0	149,0	106,0	102,0
42	ENERCON E-101	3,0	101,0	149,0	106,0	100,0

 Tabelle 6:
 Anzunehmende Schalleistungspegel der Vorbelastung am Standort Ebersdorf-Alfstedt.

Für die WEA 02 bis 09 vom Typ GE 5.3-158 wurden die anzuwendenden, genehmigten Schallleistungspegel und die entsprechenden Oktavspektren /16/ entnommen, mit Herstellerangaben /18/, /19/ abgeglichen und in Tabelle 6 dargestellt.

Für die WEA 10 bis 13 vom Typ ENERCON E-138 EP3 E2 wurden die anzuwendenden, genehmigten Schallleistungspegel und die entsprechenden Oktavspektren /20/ entnommen, mit /16/ verglichen und in Tabelle 6 dargestellt.

Seite 16 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Für die WEA 14 bis 16 vom Typ ENERCON E-40/5.40 sowie für die WEA 21 bis 26 vom Typ ENERCON E-40/6.44 wurden die anzuwendenden Schallleistungspegel und Oktavspektren /16/ entnommen und in Tabelle 6 dargestellt. Die entsprechenden Oktavspektren wurden in /16/ anhand des in /2/ angegebenen Referenzspektrums erstellt.

Für die WEA 20 vom Typ ENERCON E-101 mit 99,0 m NH und die WEA 27 bis 42 vom selben Typ und mit 149,0 m NH wurden die anzuwendenden Schallleistungspegel /16/ entnommen, die entsprechenden Oktavspektren aus /21/ skaliert und in Tabelle 6 dargestellt.

	v	Φ	Pegel der Oktaven [dB(A)]									
WEA-Typ	Modus	Quelle	31,5 Hz	62,5 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	ZH 000Z	4000 Hz	zH 0008	Summe [dB(A)]
GE 5.3-158	NO106	Noise_Emissio n-NO_5.3-158- 50Hz_FGW_G E_r03, /18/	ı	87,2	92,6	97,2	99,7	101,3	99,1	91,7	76,0	106,0
GE 5.3-158	NRO105	Noise_Emissio n-NRO_5.3- 158- 50Hz FGW N	-	86,2	91,9	96,6	98,9	100,1	97,7	90,4	75,2	105,0
GE 5.3-158	NRO102	RO100- 105_GE_r03, /19/	ı	83,2	89,6	94,5	96,3	96,6	94,0	87,6	73,1	102,0
ENERCON E-138 EP3	BM0s	Pegel und Spektrum aus Genehmigungs	-	90,9	96,9	99,7	101,8	101,6	98,9	89,7	66,7	107,3
E2, NH 160	BMIIs	bescheid 63/20744-19- 13, /20/	ı	89,3	95,0	97,8	99,7	99,5	96,9	87,7	64,5	105,3
ENERCON E-40/5.40, NH 65	102 dB(A)	Pegel aus GS IEL, Refspektr, /16/, /2/	ı	81,7	90,1	94,3	96,5	96,0	94,0	90,0	79,1	102,0
ENERCON E-40/6.44, NH 50	101 dB(A)	Pegel aus GS IEL, Refspektr, /16/, /2/	-	80,7	89,1	93,3	95,5	95,0	93,0	89,0	78,1	101,0
ENERCON E-101, NH 99	106,5 dB(A)	Pegel aus GS IEL, Spektr. aus DWG MN15052.A0, /16/, /2/, /21/	1	86,7	93,7	99,8	102,2	100,3	94,6	88,6	77,1	106,4
	106 dB(A)		-	86,2	93,3	99,3	101,7	99,9	94,2	88,2	76,7	105,9
ENERCON	104 dB(A)	Pegel aus GS IEL, Spektr.	-	84,6	91,5	97,5	99,8	98,0	92,4	86,5	75,2	104,0
E-101, NH	102 dB(A)	skaliert aus DWG	ı	83,0	89,7	95,6	97,8	96,1	90,6	84,8	73,8	102,1
149	100 dB(A)	MN15052.A0, /16/, /2/, /21/	-	81,4	88,0	93,7	95,9	94,2	88,8	83,2	72,4	100,3
	99 dB(A)		-	80,5	87,1	92,8	95,0	93,3	87,9	82,4	71,6	99,3

Tabelle 7: Verwendete Oktavspektren des Nachtbetriebes der als Vorbelastung zu berücksichtigenden WEA am Standort Ebersdorf-Alfstedt /16/, /2/, /18/, /19/, /20/, /21/.

Seite 17 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Gemäß /16/ sind BHKW in den Ortschaften Ebersdorf und Alfstedt, sowie einmal im Außenbereich ca. 1,5km südwestlich der geplanten WEA 01 als mögliche Vorbelastung in Betracht zu ziehen. Die Pegel wurden /16/ entnommen und sind in Tabelle 8 dargestellt.

Lfd. Nr.	Bezeichnung	LWA Tag [dB(A)]	LWA Nacht [dB(A)]
01	BHKW 01	100,0	100,0
02	BHKW 02	100,0	100,0
03	BHKW 03	100,0	100,0
04	BHKW 04	100,0	100,0
05	BHKW 05	92,0	92,0
06	BHKW 06	89,0	89,0
07	BHKW 07	81,0	81,0
08	BHKW 08	95,5	95,5
09	BHKW 09	92,0	92,0
10	BHKW 10	81,0	81,0

Tabelle 8: Pegel bodennaher Schallquellen /16/.

3.3 Zusatzbelastung

Der anzunehmende Schalleistungspegel der Zusatzbelastung am Standort Ebersdorf-Alfstedt ist in Tabelle 9 dargestellt.

ဟ		Ø		Pegel der Oktaven [dB(A)]										
WEA-Typ	Modu	Quelle	31,5 Hz	62,5 Hz	125 Hz	250 Hz	zH 009	1000 Hz	ZH 000Z	4000 Hz	ZH 0008	Summe [dB(A)]		
Nordex N163/6.X STE	Mode0	F008_277_A19 _IN, /17/	-	92,6	97,3	99,6	100,1	100,5	98,4	88,9	70,0	106,6		

Tabelle 9: Anzunehmende Schalleistungspegel der Zusatzbelastung am Standort Ebersdorf-Alfstedt /17/.

Für die WEA 01 lagen für den Tag- und Nachtbetrieb Herstellerangaben zu den Schallleistungspegeln vor. Die anzunehmenden Schallleistungspegel und Oktavspektren wurden /17/ entnommen.

Seite 18 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

4 Ergebnisse

4.1 Qualität der Prognose (oberer Vertrauensbereich)

Da die der Schallimmissionsprognose zu Grunde gelegten Emissionswerte im Sinne der Statistik Schätzwerte sind, die den wahren Wert innerhalb eines Vertrauensbereiches eingrenzen, ist bei der Prognose die obere Vertrauensbereichsgrenze für den Schätzwert heranzuziehen. In der Regel ist nach /2/ diese Vertrauensbereichsgrenze nicht bekannt.

Für das Bundesland Niedersachsen wurde der Erlass für die Planung und Genehmigung von Windenergieanlagen an Land in Niedersachsen herausgegeben. Gemäß /10/ ist die Schallimmissionsprognose nach den Vorgaben der TA Lärm /1/ durchzuführen. Weiterhin ist der Nachweis zu führen, dass unter Berücksichtigung der oberen Vertrauensbereichsgrenze aller Unsicherheiten der nach TA Lärm ermittelte Beurteilungspegel mit einer Wahrscheinlichkeit von 90 % den Immissionsrichtwert der TA Lärm am maßgeblichen Immissionsort nicht überschreitet. Mit /11/ wurden in Niedersachsen die ..Hinweise zum Schallimmissionsschutz bei Windkraftanlagen" /2/ eingeführt und mit /12/ Hinweise zu deren Anwendung veröffentlicht.

Die TA Lärm /1/ fordert für die Berechnung von Schallausbreitung einen Nachweis zur Überprüfung der Qualität der Prognose zu führen. Die Bund/Länder-Arbeitsgemeinschaft Immissionsschutz (LAI) hat auf ihrer 134. Sitzung im September 2017 den Ländern die Empfehlung zur Anwendung der "Hinweise zum Schallimmissionsschutz bei Windkraftanlagen" /2/ ausgesprochen.

Demnach wird die Qualität der Schallimmissionsprognose durch die folgenden Faktoren bestimmt:

- Unsicherheit der Typvermessung (σ_R)
- Unsicherheit der Serienstreuung (σ_P)
- Unsicherheit des Prognosemodells (σ_{Prog})

Im Falle, dass die Immissionsprognose auf der Grundlage der Herstellerangabe erfolgt, werden gemäß /2/ für Typvermessung und Serienstreuung keine Unsicherheiten ausgewiesen, da gemäß /2/ eine Nachvermessung zu erfolgen hat, um den Nachweis der Nicht-Überschreitung der festgesetzten Herstellerangabe zu erbringen.

Das Verfahren der Einbeziehung der Unsicherheiten wird im Kapitel 4.1.1 näher beschrieben.

Seite 19 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

4.1.1 Berechnung der Prognoseunsicherheit mit der Gesamtunsicherheit σ_{Ges} und die Berechnung der oberen Vertrauensbereichsgrenze L_o

Gemäß /2/ wird eine Gesamtunsicherheit σ_{Ges} anhand der Einzelunsicherheiten berechnet und mit dem Faktor k = 1,28 multipliziert. Dieser Wert wird auf den zuvor bestimmten mittleren Schallleistungspegel L_m addiert um den in die Berechnung eingehenden Schallleistungspegel L_o inklusive des oberen Vertrauensbereiches zu bilden:

$$L_o = L_m + (k * \sigma_{Ges})$$

Die Gesamtunsicherheit σ_{Ges} wird dabei wie folgt gebildet:

$$\sigma_{Ges} = \sqrt{\sigma_R^2 + \sigma_P^2 + \sigma_{Prog}^2}$$

Die Unsicherheit der Typvermessung σ_R kann gemäß /2/ bei einer normkonformen nach FGW-Richtlinie durchgeführten Typvermessung mit 0,5 dB(A) angenommen werden.

Die Unsicherheit des Prognosemodells σ_{Prog} wird gemäß /2/ mit 1 dB(A) angegeben.

Die Unsicherheit der Serienstreuung σ_P kann gemäß /2/ bei mehrfach-vermessenen WEA (drei oder mehr Vermessungen) näherungsweise mit s gleichgesetzt werden. Liegt keine Mehrfachvermessung vor, ist gemäß /2/ σ_P = 1,2 dB(A) zu setzen.

Für den Fall, dass die Schallimmissionsprognose auf der Grundlage von Herstellerangeben erfolgt, können gemäß /13/ für die Unsicherheit der Typvermessung σ_R sowie die Unsicherheit aufgrund der Serienstreuung σ_P die gleichen Zahlenwerte verwendet werden wie für eine nicht mehrfach vermessene Anlage ($\sigma_R = 0.5 \ dB(A)$ und $\sigma_P = 1.2 \ dB(A)$). Dies trifft im vorliegenden Fall auf die geplante WEA 01 sowie die bestehenden WEA 02 bis 09 zu.

Die den Berechnungen zugrunde liegenden Werte für σ_R , σ_P und σ_{Prog} sowie für die resultierende Gesamtunsicherheit σ_{Ges} sind in der nachfolgenden Tabelle 10 dargestellt.

WEA-Typ	σ_R [dB(A)]	σ_P [dB(A)]	σ _{Prog} [dB(A)]	σ _{Ges} [dB(A)]
Nordex N163/6.X	0,5	1,2	1,0	1,6
GE 5.3-158	0,5	1,2	1,0	1,6

Seite 20 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

WEA-Typ	σ_R [dB(A)]	σ_{P} [dB(A)]	σ _{Prog} [dB(A)]	σ _{Ges} [dB(A)]
ENERCON E-138 EP3 E2	0,0	0,0	1,0	1,0
ENERCON E-40/5.40	0,5	1,2	1,0	1,6
ENERCON E-40/6.44	0,5	1,2	1,0	1,6
ENERCON E-101, NH 99	0,5	1,2	1,0	1,6
ENERCON E-101, NH 149	0,5	1,2	1,0	1,6

Tabelle 10: Gesamt- und Teilunsicherheiten der Schallleistungspegel.

In einer statistischen Betrachtung für ein Vertrauensniveau von 90% ergibt sich die obere Vertrauensbereichsgrenze L_{\circ} dann wie oben angegeben. Die obere Vertrauensbereichsgrenze L_{\circ} für die geplanten WEA ist in Tabelle 11 dargestellt.

WEA-Typ	L_{m} [dB(A)]	$k*\sigma_{ges}$ [dB(A)]	L_{o} [dB(A)]
Nordex N163/6.X, Mode 0	106,6	2,1	108,7
GE 5.3-158, NO106	106,0	2,1	108,1
GE 5.3-158, NRO105	105,0	2,1	107,1
GE 5.3-158, NRO102	102,0	2,1	104,1
ENERCON E-138 EP3 E2	107,3	1,3	108,6
ENERCON E-138 EP3 E2	105,3	1,3	106,6
ENERCON E-40/5.40	102,0	2,1	104,1
ENERCON E-40/6.44	101,0	2,1	103,1
ENERCON E-101, NH 99, 106,5 dB(A)	106,4	2,1	108,5
ENERCON E-101, NH 149 106 dB(A)	105,9	2,1	108,0
ENERCON E-101, NH 149 104 dB(A)	104,0	2,1	106,1
ENERCON E-101, NH 149 102 dB(A)	102,1	2,1	104,2

Seite 21 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

WEA-Typ	$L_{m} \; [exttt{dB(A)}]$	$\mathbf{k}*\sigma_{\mathrm{ges}}$ [dB(A)]	L_{o} [dB(A)]
ENERCON E-101, NH 149 100 dB(A)	100,3	2,1	102,4
ENERCON E-101, NH 149 99 dB(A)	99,3	2,1	101,4

Tabelle 11: Obere Vertrauensbereichsgrenzen L_0 der Schallleistungspegel.

Lo stellt die obere Vertrauensbereichsgrenze des Schallleistungspegels mit einer statistischen Sicherheit von 90 % dar.

4.2 Vor-, Zusatz- und Gesamtbelastung inklusive des oberen Vertrauensbereichs gemäß /1/

Gemäß TA Lärm /1/ setzen sich die Parameter zur Berechnung der Gesamtbelastung aus der Vorbelastung der bestehenden WEA sowie Zusatzbelastung der geplanten WEA zusammen. In der folgenden Tabelle 12 werden die Berechnungsergebnisse für die Vor-, Zusatz- und Gesamtbelastung inklusive oberer Vertrauensbereich sowie der Reservewert der Gesamtbelastung zum IRW Nacht dargestellt. Vor dem Vergleich mit den jeweils gültigen IP Nacht wird gemäß /2/ und /5/ das Berechnungsergebnis auf ganze Zahlen gerundet. Die detaillierten Berechnungsergebnisse sind im Anhang (Kapitel 8.1) dargestellt.

IP	Vorbelas- tung [dB(A)]	Zusatzbe- lastung [dB(A)]	Gesamtbe- lastung L _p [dB(A)]	Beurtei- lungspegel (gerundet) [dB(A)]	IRW Nacht [dB(A)]	Reserve zum IRW Nacht [dB(A)]	Gesamtbe- lastung ≤ IRW
01	39,7	28,3	40,0	40	45	5	Ja
02	39,8	28,4	40,1	40	45	5	Ja
03	36,6	24,1	36,8	37	35	-2	Nein
04	37,0	24,4	37,3	37	40	3	Ja
05	46,0	29,7	46,1	46	45	-1	Nein
06	45,0	30,7	45,2	45	45	0	Ja
07	45,1	30,7	45,3	45	45	0	Ja
08	43,4	29,6	43,6	44	45	1	Ja
09	39,6	26,3	39,8	40	40	0	Ja
10	41,8	32,5	42,3	42	45	3	Ja
11	44,1	32,4	44,4	44	45	1	Ja
12	43,6	30,9	43,8	44	45	1	Ja
13	42,4	29,6	42,6	43	40	-3	Nein

Seite 22 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

IP	Vorbelas- tung [dB(A)]	Zusatzbe- lastung [dB(A)]	Gesamtbe- lastung L _p [dB(A)]	Beurtei- lungspegel (gerundet) [dB(A)]	IRW Nacht [dB(A)]	Reserve zum IRW Nacht [dB(A)]	Gesamtbe- lastung ≤ IRW
14	38,7	30,9	39,4	39	40	1	Ja
15	41,3	34,3	42,1	42	45	3	Ja
16	43,7	37,3	44,6	45	45	0	Ja
17	41,7	27,2	41,9	42	40	-2	Nein
18	47,1	29,7	47,1	47	45	-2	Nein
19	41,0	26,8	41,1	41	45	4	Ja
20	37,5	22,2	37,6	38	40	2	Ja
21	41,1	20,6	41,1	41	35	-6	Nein
22	44,2	37,9	45,1	45	45	0	Ja

Tabelle 12: Ergebnisse der entstehenden Schallimmissionen durch die Vor-, Zusatz- und Gesamtbelastung inklusive der oberen Vertrauensbereichsgrenze.

Die Ergebnisse zeigen eine Überschreitung des nächtlichen Immissionsrichtwertes (IRW Nacht) an den IP 03, 05, 13, 17, 18 und 21 um 1 bis 6 dB(A). Diese Überschreitungen sollten einer Genehmigung der geplanten WEA 01 jedoch nicht entgegenstehen, da der nächtliche Immissionsbeitrag dieser Anlage an diesen IP jeweils mehr als 6 dB(A) unterhalb des dortigen IRW Nacht liegt und somit gemäß TA Lärm /1/ in der Regel als nicht relevant angesehen werden kann. Alle weiteren IP weisen keine Überschreitungen der IRW in der Gesamtbelastung auf.

Die Isophonen-Karten der Vor-, Zusatz, und Gesamtbelastungen sind im Anhang (Kapitel 8.1) abgebildet.

5 Zusammenfassung und Bewertung

Im Rahmen der Errichtung von einer Windenergieanlage (WEA) vom Typ Nordex N163 6.X STE, 6,8 MW (WEA 01) mit 164,0 m Nabenhöhe (NH) und 163,0 m Rotordurchmesser (D) am Standort Ebersdorf-Alfstedt (Niedersachsen) ist die TÜV NORD EnSys GmbH & Co. KG von der Ebersdorfer Bioenergie GmbH & Co. KG mit der Durchführung einer Schallimmissionsprognose beauftragt worden. Als Vorbelastung sind 41 bestehende WEA (WEA 02 bis 42) in der Umgebung der geplanten WEA zu berücksichtigen /16/. Weiterhin sind die Blockheizkraftwerke (BHKW) 01 bis 10 in der Umgebung der geplanten WEA in Betracht zu ziehen.

Hierzu werden für den Tag- und Nachtbetrieb der geplanten WEA 01 der Betriebsmodus 0 s /17/ angenommen.

Seite 23 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Die Ergebnisse zeigen eine Überschreitung des nächtlichen Immissionsrichtwertes (IRW Nacht) an den IP 03, 05, 13, 17, 18 und 21 um 1 bis 6 dB(A). Diese Überschreitungen sollten einer Genehmigung der geplanten WEA 01 jedoch nicht entgegenstehen, da der nächtliche Immissionsbeitrag dieser Anlage an diesen IP jeweils mehr als 6 dB(A) unterhalb des dortigen IRW Nacht liegt und somit gemäß TA Lärm /1/ in der Regel als nicht relevant angesehen werden kann. Alle weiteren IP weisen keine Überschreitungen der IRW in der Gesamtbelastung auf.

Die Berechnungen der Immissionsprognose werden entsprechend der Technischen Anleitung zum Schutz gegen Lärm - TA Lärm /1/, nach DIN ISO 9613-2 /4/ durchgeführt. Gemäß den Empfehlungen der Bund / Länderarbeitsgemeinschaft Immissionsschutz (LAI) /2/ wird für die Prognose der Geräuschimmissionen von WEA das in /3/ festgelegte modifizierte Verfahren der DIN ISO 9613-2 /4/ angewendet ("Interimsverfahren zur Prognose der Geräuschimmissionen von Windkraftanlagen").

Die vorliegende gutachtliche Stellungnahme ist nur in ihrer Gesamtheit gültig. Die darin getroffenen Aussagen beziehen sich ausschließlich auf die vorliegenden überlieferten Dokumente.

Die TÜV NORD EnSys GmbH & Co. KG übernimmt keine Gewähr für die Richtigkeit der vom Auftraggeber übermittelten Informationen und Angaben und für durch unrichtige Angaben bedingte falsche Aussagen.

Die von TÜV NORD EnSys GmbH & Co. KG erbrachten Leistungen (z.B. Gutachten-, Prüf- und Beratungsleistungen) dürfen nur im Rahmen des vertraglich vereinbarten Zwecks verwendet werden. Vorbehaltlich abweichender Vereinbarungen im Einzelfall, räumt TÜV NORD EnSys GmbH & Co. KG dem Auftraggeber an seinen urheberrechtsfähigen Leistungen jeweils ein einfaches, nicht übertragbares sowie zeitlich und räumlich auf den Vertragszweck beschränktes Nutzungsrecht ein. Weitere Rechte werden ausdrücklich nicht eingeräumt, insbesondere ist der Auftraggeber nicht berechtigt, die Leistungen des Auftragnehmers zu bearbeiten, zu verändern oder nur auszugsweise zu nutzen.

Eine Veröffentlichung der Leistungen über den Rahmen des vertraglich vereinbarten Zwecks hinaus, auch auszugsweise, bedarf der vorherigen schriftlichen Zustimmung von TÜV NORD EnSys GmbH & Co. KG. Eine Bezugnahme auf TÜV NORD EnSys GmbH & Co. KG ist nur bei Verwendung der Leistung in Gänze und unverändert zulässig.

Bei einem Verstoß gegen die vorstehenden Bedingungen ist TÜV NORD EnSys GmbH & Co. KG jederzeit berechtigt, dem Auftraggeber die weitere Nutzung der Leistungen zu untersagen.

Seite 24 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

6 Literatur- und Quellenangaben

- Hundesministerium für Umwelt, Naturschutz und Reaktorsicherheit; Sechste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm TA Lärm); (GMBI NR.26/1998 S. 503); 26. August 1998
- /2/ Bund/Länder-Arbeitsgemeinschaft für Immissionsschutz (LAI); Hinweise zum Schallimmissionsschutz bei Windenergieanlagen; beschlossen auf der 134. Sitzung der LAI; Husum; 05 - 06.09.2017
- Dokumentation zur Schallausbreitung: Interimsverfahren zur Prognose der Geräuschimmissionen von Windkraftanlagen, Fassung 2015-05.1 (http://www.beuth.de/de/publikation/dokumentation-zur-schallausbreitung/235920529?SearchID=900170877)
- /4/ DIN Deutsches Institut für Normung e.V.; Dämpfung des Schalls bei der Ausbreitung im Freien, Teil 2: Allgemeines Berechnungsverfahren (ISO 9613-2:1996); Berlin; Oktober 1999
- /5/ DIN Deutsches Institut für Normung e.V.; DIN 1333: Zahlenangaben; Berlin; Februar 1992
- /6/ FGW e.V. Fördergesellschaft Windenergie und andere Erneuerbare Energien (Herausgeber); Technische Richtlinie zur Bestimmung der Schallemissionswerte, Revision 18; Berlin; Stand 01.02.2008
- /7/ EMD International A/S; WindPRO Version 3.5 (http://www.emd.dk); 2021; Dänemark
- /8/ Google Inc.; Google Earth Pro; (www.google.de/earth), Version 7.3.4, 2021, USA, 2021
- /9/ Magic Maps Tour Explorer 25, Topografische Karten, TK 1:25000, Pliezhausen, 2010
- /10/ Niedersächsisches Ministerium für Umwelt, Energie und Klimaschutz; Planung und Genehmigung von Windenergieanlagen an Land (Windenergieerlass); Hannover, 24.02.2016
- /11/ Niedersächsisches Ministerium für Umwelt, Energie, Bauen und Klimaschutz; Einführung der "Hinweise zum Schallimmissionsschutz bei Windkraftanlagen (WKA)" vom 30.06. 2016 der Bund/Länder-Arbeitsgemeinschaft für Immissionsschutz (LAI); Hannover, 30.01.2018
- /12/ Niedersächsisches Ministerium für Umwelt, Energie, Bauen und Klimaschutz; Beantwortung von Fragen zum Erlass zur Einführung der "Hinweise zum Schallimmissionsschutz bei Windkraftanlagen (WKA)"

Seite 25 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

- vom 30.06. 2016 der Bund/Länder-Arbeitsgemeinschaft für Immissionsschutz (LAI); Hannover, 24.11.2020
- /13/ Ministerium für Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen; Dienstbesprechung am 02.02.2018 Einführung der neuen LAI-Hinweise zum Schallimmissionsschutz bei Windkraftanlagen Beantwortung von Zweifelsfragen
- /14/ GeoBasis-DE; Geodaten der deutschen Landesvermessung Bundesamt für Kartographie und Geodäsie; DOP Viewer; Stand vom 06.10.2021
- /15/ Ebersdorfer Bioenergie GmbH & Co. KG; Angaben zu den WEA-Spezifikationen der geplanten WEA mit Koordinaten und Lageplan; Übermittelt durch mit E-Mail vom 29.07.2021, 30.08.2021 und 04.02.2022
- /16/ IEL GmbH; Schalltechnisches Gutachten für die Errichtung und den Betrieb von Windenergieanlagen am Standort Alfstedt; Bericht-Nr. 4245-19-L2; Aurich, 05.07.2019; Download von uvp.niedersachsen.de am 01.09.2021
- /17/ Nordex Energy SE & Co. KG; Octave sound power levels / Oktav-Schallleistungspegel, Nordex N163/6.X; Dokument-ID: F008_277_A19_IN, Rev 3; Hamburg, 10.12.2021
- /18/ GE Renewable Energy; Technische Dokumentation Windenergieanlage 5.3-158 50 Hz, Schallleistung Normalbetrieb gemäß FGW, Inkl. Terzund Oktavspektren; Dokument-ID: Noise_Emission-NO_5.3-158-50Hz FGW GE r03; Rev 3; 2018
- GE Renewable Energy; Technische Dokumentation Windenergieanlage 5.3-158 50 Hz, Schallleistung Schallreduzierter Betrieb gemäß FGW, Inkl. Terz- und Oktavspektren; Dokument-ID: Noise_Emission-NRO_5.3-158-50Hz_FGW_NRO100-105_GE_r03; Rev 3; 2018
- /20/ Landkreis Rotenburg; Errichtung von 4 Windenergieanlagen Typ ENERCON E-138 EP2 E2, Genehmigung nach § 4 i.V.m. § 10 BlmSchG; Dokument-ID: 63/20744-19; Rotenburg (Wümme); 10.09.2020
- /21/ Deutsche WindGuard Consulting GmbH; Schallemissionsmessung an einer Windenergieanlage; Dokument-ID: MN15052.A0, Varel; 25.09.2015
- /22/ Verbundprojekt: Objektive Kriterien zu Erschütterungs- und Schallemissionen durch Windenergieanlagen im Binnenland;

Seite 26 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Akronym/Kurzbezeichnung: TremAc; Zusammenfassender Schlussbericht zum Gesamtvorhaben; Verfasser: Dr.-Ing. Peter Kudella; Karlsruhe, Januar 2020

Seite 27 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

7 Formelzeichen und Abkürzungen

σ_{Ges}	Gesamtunsicherheit	[dB(A)]
σ_{P}	Ungenauigkeit bedingt durch die Serienstreuung der WEA	[dB(A)]
σ_{Prog}	Unsicherheit des Prognosemodells der Ausbreitungsrechnung	[dB(A)]
σ_{R}	Ungenauigkeit der Schallemissionsvermessung der WEA	[dB(A)]
ВМ	Betriebsmodus	
D	Rotordurchmesser	[m]
dB(A)	Schalldruckpegel	[dB(A)]
ETRS89	Europäische Terrestrische Referenzsystem 1989	
IP	Immissionspunkt(e)	
IRW	Immissionsrichtwert	[dB(A)]
LAI	Länderausschuss für Immissionsschutz	
L _m	mittlerer Schallleistungspegel	[dB(A)]
Lo	obere Vertrauensbereichsgrenze des Schalleistungspegels	[dB(A)]
Lwa/Li	Schallleistungspegel	[dB(A)]
n	Anzahl der Einzelmessungen	
NH	Nabenhöhe	[m]
P _{Nenn}	Nennleistung	[MW]
s	Standardabweichung der Messungen	[dB(A)]
TA	Technische Anleitung	
WEA	Windenergieanlage(n)	

Seite 28 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

8 Anhang

8.1 Detaillierte Berechnungsergebnisse

- Vorbelastung Hauptergebnis (inkl. oberer Vertrauensbereichsgrenze)
- Vorbelastung Teilimmissionspegel je IP (inkl. oberer Vertrauensbereichsgrenze)
- Vorbelastung Annahmen (inkl. oberer Vertrauensbereichsgrenze)
- Vorbelastung Übersichtskarte Isophonen (inkl. oberer Vertrauensbereichsgrenze)
- Vorbelastung BHKW Hauptergebnis (inkl. oberer Vertrauensbereichsgrenze)
- Vorbelastung BHKW Teilimmissionspegel je IP (inkl. oberer Vertrauensbereichsgrenze)
- Vorbelastung BHKW Annahmen (inkl. oberer Vertrauensbereichsgrenze)
- Vorbelastung BHKW Übersichtskarte Isophonen (inkl. oberer Vertrauensbereichsgrenze)
- Zusatzbelastung Hauptergebnis (inkl. oberer Vertrauensbereichsgrenze)
- Zusatzbelastung Teilimmissionspegel je IP (inkl. oberer Vertrauensbereichsgrenze)
- Zusatzbelastung Annahmen (inkl. oberer Vertrauensbereichsgrenze)
- Zusatzbelastung Übersichtskarte Isophonen (inkl. oberer Vertrauensbereichsgrenze)
- Gesamtbelastung Übersicht der Teilimmissionspegel

Seite 29 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

Lizenzierter Anwender: TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

Berechnet: 09.02.2022 16:11/3.5.576

DECIBEL - Hauptergebnis

Berechnung: VB

ISO 9613-2 Deutschland (Interimsverfahren)

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Lautester Wert bis 95% Nennleistung Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm

Industriegebiet: 70 dB(A)
Dorf- und Mischgebiet, Außenbereich: 45 dB(A)
Reines Wohngebiet / Kurgebiet u.ä. : 35 dB(A)
Gewerbegebiet: 50 dB(A)
Allgemeines Wohngebiet: 40 dB(A)
Kur- und Feriengebiet: 35 dB(A)

Alle Koordinatenangaben in: UTM (north)-ETRS89 Zone: 32

WEA

					WEA	-Тур					Schall	werte		
	Ost	Nord	Z	Beschreibung	Ak-	Hersteller	Тур	Nenn-	Rotor-	Naben-	Quelle	Name	Windge-	LWA
					tu-			leistung	durch-	höhe			schwin-	
					ell				messer				digkeit	
			[m]					[kW]	[m]	[m]			[m/s]	[dB(A)]
WEA 02	502.202	5.932.417	6,5	GE WIND ENE	RG Nein	GE WIND ENERGY	5.5-158 Thrust 700-5.500	5.500	158,0	161,0	USER	NRO105_105+2,1dB(A)	10,0	107,1
WEA 03	502.433	5.932.740	6,8	GE WIND ENE	RG Nein	GE WIND ENERGY	5.5-158 Thrust 700-5.500	5.500	158,0	161,0	USER	NRO102_102+2,1dB(A)	10,0	104,1
WEA 04	502.486	5.933.153	0,0	GE WIND ENE	RG Nein	GE WIND ENERGY	5.5-158 Thrust 700-5.500	5.500	158,0	161,0	USER	NRO102_102+2,1dB(A)	10,0	104,1
WEA 05	502.118	5.932.991	0,8	GE WIND ENE	RG Nein	GE WIND ENERGY	5.5-158 Thrust 700-5.500	5.500	158,0	161,0	USER	NRO102_102+2,1dB(A)	10,0	104,1
WEA 06	501.968	5.933.356	0,0	GE WIND ENE	RG Nein	GE WIND ENERGY	5.5-158 Thrust 700-5.500	5.500	158,0	161,0	USER	NRO102_102+2,1dB(A)	10,0	104,1
WEA 07	501.724	5.933.035	0,0	GE WIND ENE	RG Nein	GE WIND ENERGY	5.5-158 Thrust 700-5.500	5.500	158,0	161,0	USER	NRO105_105+2,1dB(A)	10,0	107,1
WEA 08	501.506	5.933.371	0,0	GE WIND ENE	RG Nein	GE WIND ENERGY	5.5-158 Thrust 700-5.500	5.500	158,0	161,0	USER	NRO105_105+2,1dB(A)	10,0	107,1
WEA 09	501.082	5.933.389	1,5	GE WIND ENE	RG Nein	GE WIND ENERGY	5.5-158 Thrust 700-5.500	5.500	158,0	161,0	USER	NO106_106+2,1dB(A)	10,0	108,1
WEA 10		5.932.997	0,0	ENERCON E-1	38 Ja	ENERCON	E-138 EP3 E2-4.200	4.200	138,3	160,0	USER	BMIIs_105,3+1,3dB(A)	10,0	106,6
WEA 11		5.933.262	2,5	ENERCON E-1	38 Ja	ENERCON	E-138 EP3 E2-4.200	4.200	138,3	160,0	USER	BMIIs_105,3+1,3dB(A)	10,0	106,6
WEA 12		5.932.867	4,5	ENERCON E-1	38 Ja	ENERCON	E-138 EP3 E2-4.200	4.200	138,3	160,0	USER	BMIIs_105,3+1,3dB(A)	10,0	
WEA 13		5.932.963		ENERCON E-1		ENERCON	E-138 EP3 E2-4.200	4.200	138,3	160,0	USER	BMIIs_105,3+1,3dB(A)	10,0	
WEA 14	503.890	5.934.732	0,0	ENERCON E-4	0/5 Nein	ENERCON	E-40/5.40-500	500	40,3	65,0	USER	102+RefSpek_102+2,1dB(A)	10,0	104,1
WEA 15		5.934.437		ENERCON E-4			E-40/5.40-500	500	40,3	65,0	USER	102+RefSpek_102+2,1dB(A)	10,0	104,1
WEA 16		5.934.226	7,3	ENERCON E-4	0/5 Nein	ENERCON	E-40/5.40-500	500	40,3	65,0	USER	102+RefSpek_102+2,1dB(A)	10,0	
WEA 20		5.934.587		ENERCON E-1			E-101-3.000	3.000	101,0	99,0	USER	106,5+2,1dB(A)	10,0	108,5
WEA 21		5.933.806		ENERCON E-4			E-40/6.44-600	600	44,0	50,0	USER	102,0+2,1dB(A)	10,0	103,1
WEA 22	500.131	5.933.628	4,3	ENERCON E-4	0/6 Nein	ENERCON	E-40/6.44-600	600	44,0	50,0	USER	102,0+2,1dB(A)	10,0	103,1
WEA 24		5.932.619		ENERCON E-4			E-40/6.44-600	600	44,0	50,0	USER	102,0+2,1dB(A)	10,0	
WEA 25				ENERCON E-4			E-40/6.44-600	600	44,0	50,0	USER	102,0+2,1dB(A)	10,0	
WEA 26				ENERCON E-4			E-40/6.44-600	600	44,0	50,0	USER	102,0+2,1dB(A)	10,0	
WEA 27				ENERCON E-1			E-101-3.000	3.000	101,0	149,0	USER	106,0+2,1dB(A)	10,0	
WEA 28				ENERCON E-1			E-101-3.000	3.000	101,0	149,0	USER	106,0+2,1dB(A)	10,0	
WEA 29				ENERCON E-1			E-101-3.000	3.000	101,0	149,0	USER	106,0+2,1dB(A)	10,0	108,0
WEA 30				ENERCON E-1			E-101-3.000	3.000	101,0	149,0	USER	106,0+2,1dB(A)	10,0	
WEA 31				ENERCON E-1			E-101-3.000	3.000	101,0	149,0	USER	106,0+2,1dB(A)	10,0	
WEA 32				ENERCON E-1			E-101-3.000	3.000	101,0	149,0	USER	106,0+2,1dB(A)	10,0	
WEA 33				ENERCON E-1			E-101-3.000	3.000	101,0	149,0	USER	106,0+2,1dB(A)	10,0	
WEA 34				ENERCON E-1			E-101-3.000	3.000	101,0	149,0	USER	104,0+2,1dB(A)	10,0	
WEA 35				ENERCON E-1			E-101-3.000	3.000	101,0	149,0	USER	106,0+2,1dB(A)	10,0	
WEA 36				ENERCON E-1			E-101-3.000	3.000	101,0	149,0	USER	106,0+2,1dB(A)	10,0	
WEA 37				ENERCON E-1			E-101-3.000	3.000	101,0	149,0	USER	106,0+2,1dB(A)	10,0	
WEA 38				ENERCON E-1			E-101-3.000	3.000	101,0	149,0	USER	106,0+2,1dB(A)	10,0	
WEA 39				ENERCON E-1			E-101-3.000	3.000	101,0	149,0	USER	99,0+2,1dB(A)	10,0	
WEA 40				ENERCON E-1			E-101-3.000	3.000	101,0	149,0	USER	102,0+2,1dB(A)	10,0	
WEA 41				ENERCON E-1			E-101-3.000	3.000	101,0	149,0	USER	102,0+2,1dB(A)	10,0	
WEA 42	497.677	5.931.459	10,0	ENERCON E-1	01 Nein	ENERCON	E-101-3.000	3.000	101,0	149,0	USER	100,0+2,1dB(A)	10,0	102,4

Berechnungsergebnisse

Schall-Immissionsort					Anforderung	Beurteilur	ngspegel	Anforderung erfüllt?
Nr. Name	Ost	Nord	Z	Auf- punkt- höhe	Schall	Von WEA	Distanz z.Richtwert	Schall
			[m]	[m]	[dB(A)]	[dB(A)]	[m]	
IP 01 Schall-Immissionsort: TA Lärm - Außenbereich (1)	501.543	5.935.093	7,2	5,0	45,0	39,7	888	Ja
IP 02 Schall-Immissionsort: TA Lärm - Außenbereich (2)	501.794	5.935.074	8,7	5,0	45,0	39,8	907	Ja
IP 03 Schall-Immissionsort: TA Lärm - Reines Wohngebiet / Kurgebiet (3)	502.455	5.936.060	10,0	5,0	35,0	36,6	-408	Nein
IP 04 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (4)	502.511	5.935.962	10.0	5,0	40,0	37,0	588	Ja

Seite 30 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

Lizenderter Anwender: **TÜV NORD EnSys GmbH & Co. KG -**Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

Berechnet: 09.02.2022 16:11/3.5.576

DECIBEL - Hauptergebnis

Berechnung: VB

(Fortsetz			iger Sei	te)												_						
Schall-In		nsort								0.4		-			forderu		eurteilu			Anforde		erfüllt?
Nr. Nar	ne									Ost	Nord	Z		uf- nkt-	Schall		Von WEA	Dist z.Rich			Schall	
														ihe				Z.RICI	itwert			
												[m		m]	[dB(A)]		[dB(A)]	[n	nl			
IP 05 Sch	all-Imm	issionso	rt: TA L	ärm - A	ußenber	reich (5))		5	03.093	5.934.3		,0	5,0		45,0	45,9	L	-100		Nein	
	all-Imm										5.934.0		,0	5,0		45,0	45,0		2		Ja	
	all-Immi								5	03.258	5.933.9		9	5,0	- 1	45,0	45,1		-14		Nein	
IP 08 Sch	all-Immi	issionso	rt: TA L	ärm - A	ußenbei	reich (8))		5	03.708	5.933.5	55 6	,0	5,0		45,0	43,4		173		Ja	
IP 09 Sch	all-Immi	issionso	rt: TA L	ärm - A	llgemeir	nes Woh	nngebiet	(9)	5	04.550	5.933.3	58 10	,0	5,0		40,0	39,2		118		Ja	
	all-Imm										5.932.6			5,0		45,0	41,5		423		Ja	
	all-Imm										5.931.9			5,0		45,0	40,2		568		Ja	
	all-Imm										5.931.6			5,0		45,0	38,5		831		Ja	
	all-Imm										5.931.0			5,0		40,0	36,7		599		Ja	
	all-Imm							(14)			5.930.9			5,0		40,0	37,5		442		Ja	
	all-Immi all-Immi										5.931.4 5.931.7			5,0		45,0 45,0	40,7		250		Ja Ja	
	all-Immi							(17)			5.931.7			5,0		40.0	41.6		-397		Nein	
	all-Imm							(11)			5.933.4		9	5,0		45,0	47,0		-234		Nein	
	all-Immi										5.934.6			5,0		45,0	41.0		472		Ja	
	all-Imm							(20)	4	98.616	5.935.3			5,0		40,0	37,5		691		Ja	
	all-Immi								(21) 4	97.682	5.930.3	04 13	2	5,0		35,0	41,1		1.369		Nein	
IP 22 Sch	all-Imm	issionso	rt: TA L	ärm - A	ußenber	reich (2	2)		5	01.077	5.931.8	46 10	,0	5,0		45,0	44,0		153		Ja	
Abstäi	nde (m)																				
WEA	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP
****	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22
WEA 02	2756	2688	3652	3558	2101	1882	1835	1888	2530		1191	1426	1719			1286		2706	3287		4990	1262
WEA 02	2516		3320	3223		1489	1438		2205	991								2816	3253		5339	
		2420			1712			1513			1160	1449	188			1658						1624
WEA 04	2157	2042	2907	2809	1315	1103	1087	1286	2074		1433	1743	2249	-		1970		2787	3069		5585	192
WEA 05	2179	2108	3087	2997	1648	1457	1469	1687	2460		1563	1848	2249			1603		2450	2851		5186	
WEA 06	1788	1727	2748	2662	1482	1333	1407	1751	2582		1922	2218	2642			1824		2252	2520		5262	
WEA 07	2066	2040	3112	3031	1878	1717	1770	2051	2844	1741	1905	2172	2499			1427	7 2938	2056	2517		4878	1354
WEA 08	1722	1727	2852	2779	1849	1733	1835	2210	3044	2049	2278	2555	2899	271	2172	1670	3002	1790	2134	3490	4902	1584
WEA 09	1765	1829	3003	2943	2216	2122	2239	2631	3468	2455	2636	2898	3180	2939	2417	1639	2739	1366	1808	3136	4591	1543
WEA 10	2110	2136	3275	3204	2231	2092	2167	2475	3273	2152	2255	2501	274	7 249	1976	1262	2 2590	1653	2243	3552	4508	1172
WEA 11	2012	2113	3299	3247	2609	2517	2633	3014	3843	2782	2901	3142	335	306	2570	1563	3 2420	1015	1680	2940	4232	1463
WEA 12	2304	2364	3531	3467	2591	2459	2538	2844	3635		2523	2745	291			1128		1379	2142		4152	
WEA 13	2339	2437	3622	3569	2859	2748	2846	3186	3993		2904	3123	326			1322		1008	1886		3931	1224
WEA 14	2375	2124	1955	1848	897	1035	1031	1191	1524		2812	3082	377			4082		4350	4056		7625	4030
WEA 15	2422	2175	2156	2045	790	864	805	897	1273		2521	2788	3479			3860		4260	4048		7445	3813
	2474		2310		773	785																
WEA 16		2233		2199			676	688	1109		2312	2578	3269			3706		4204	4053		7318	
WEA 20	2148	1900	1885	1773	601	744	766	1035	1535		2627	2909	3589			3800		4061	3799		7330	3746
WEA 21	2015	2203	3338	3315	3142	3108	3267	3723	4579		3786	4035	425			2337		415	905		4196	224
WEA 22	2035	2204	3364	3333	3042	2992	3140	3578	4427		3581	3825	403			2115		432	1109		4129	2018
WEA 24	2834	2949	4136	4086	3390	3271	3358	3668	4451		3213	3396	3439			1282		980	2104		3392	
WEA 25	3014	3132	4319	4270	3569	3446	3529	3828	4601	3388	3316	3486	349			1298	3 1411	1057	2222	3177	3206	1224
WEA 26	3195	3315	4502	4454	3748	3622	3702	3989	4753	3524	3425	3583	3559	3124	2783	1340	1236	1159	2348	3244	3021	1276
WEA 27	4737	4962	5978	5982	6010	5968	6116	6536	7372	6269	6261	6440	642	5 5977	5654	420	3026	2553	3024	2526	2989	414
WEA 28	5086	5308	6337	6339	6322	6271	6413	6819	7646	6515	6476	6642	659	6130	5833	4369	3069	2852	3385	2894	2791	431
WEA 29	4474	4690	5747	5744	5666	5611	5750	6152	6979			5997	597			3745		2193	2811		2716	
WEA 30	5160	5375	6434		6325	6262	6394	6779	7594		6361	6514	643			4218		2855	3495		2466	417
WEA 30	4735	4939	6031	6021	5823	5751	5875	6246	7054		5798	5950	587			3654		2370	3132		2263	
WEA 31			6830			6665			7988										3886		2480	
	5561	5777			6730		6796	7177			6729	6875	6774			4567		3260				452
WEA 33	5476	5683	6766	6758	6567	6491	6612	6972	7770		6458	6593	646			4275		3117	3848		2121	4239
WEA 34	6311	6527	7578	7577	7469	7400	7526	7895	8697		7385	7515	737			5194		4003	4630		2589	516
WEA 35	4650	4838	5969	5949	5608	5517	5626	5963	6750		5415	5550	543			323		2231	3156		1911	319
WEA 36	4339	4515	5665	5640	5222	5123	5225	5550	6330	5107	4982	5118	5009	4530	4271	2803	3 1450	1915	2935	3165	1981	276
WEA 37	6106	6315	7392	7386	7198	7119	7237	7589	8381	7165	7029	7152	699	649	6285	4828	3233	3751	4464	4069	2196	479
WEA 38	5146	5338	6461	6444	6115	6023	6130	6461	7240	6012	5869	5993	584	5 535	5129	3670	2122	2733	3617	3543	1698	363
WEA 39	6518	6727	7800	7795	7615	7536	7653		8790		7420	7537	736			5213		4168	4865		2364	-
WEA 40	4920	5098	6244	6220	5797	5693	5790	6100	6866		5457	5573	5414			3249		2495	3478		1543	3222
WEA 41	5532	5716	6853	6832	6432		6424		7487		6044	6147	595			3827		3109	4040	No. of Contract of	1325	3807
WEA 42	5306	5479	6633	6606	0125	6012	6099	6385	7131	5860	5657	5753	554	503	4866	3438	3 1758	2884	3891	3980	1155	3422

Seite 31 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Protekt

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

lerechnet:

09.02.2022 16:11/3.5.576

DECIBEL - Detaillierte Ergebnisse

Berechnung: VB**Schallberechnungs-Modell:** ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref: Schallleistungspegel der WEA

K: Einzeltöne

Dc: Richtwirkungskorrektur

Adiv: Dämpfung aufgrund geometrischer Ausbreitung
Aatm: Dämpfung aufgrund von Luftabsorption
Agr: Dämpfung aufgrund des Bodeneffekts
Abar: Dämpfung aufgrund von Abschirmung

Amisc: Dämpfung aufgrund verschiedener anderer Effekte

Cmet: Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP 01 Schall-Immissionsort: TA Lärm - Außenbereich (1)

Lautester Wert bis 95% Nennleistung **WEA**

Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 02	2.756	2.760	23,93	107,1	0,00	79,82	6,34	-3,00	0,00	0,00	83,16
WEA 03	2.516	2.520	22,56	104,1	0,00	79,03	5,52	-3,00	0,00	0,00	81,55
WEA 04	2.157	2.162	24,44	104,1	0,00	77,70	4,97	-3,00	0,00	0,00	79,67
WEA 05	2.179	2.184	24,32	104,1	0,00	77,79	5,00	-3,00	0,00	0,00	79,79
WEA 06	1.788	1.794	26,67	104,1	0,00	76,08	4,36	-3,00	0,00	0,00	77,44
WEA 07	2.066	2.071	27,53	107,1	0,00	77,32	5,23	-3,00	0,00	0,00	79,56
WEA 08	1.722	1.729	29,72	107,1	0,00	75,75	4,61	-3,00	0,00	0,00	77,37
WEA 09	1.765	1.772	30,26	108,1	0,00	75,97	4,90	-3,00	0,00	0,00	77,86
WEA 10	2.110	2.116	27,70	106,6	0,00	77,51	4,38	-3,00	0,00	0,00	78,89
WEA 11	2.012	2.018	28,25	106,6	0,00	77,10	4,24	-3,00	0,00	0,00	78,33
WEA 12	2.304	2.309	26,67	106,6	0,00	78,27	4,65	-3,00	0,00	0,00	79,92
WEA 13	2.339	2.344	26,49	106,6	0,00	78,40	4,70	-3,00	0,00	0,00	80,10
WEA 14	2.375	2.375	23,25	104,1	0,00	78,51	5,35	-3,00	0,00	0,00	80,86
WEA 15	2.422	2.422	23,01	104,1	0,00	78,68	5,42	-3,00	0,00	0,00	81,11
WEA 16	2.474	2.475	22,75	104,1	0,00	78,87	5,50	-3,00	0,00	0,00	81,37
WEA 20	2.148	2.150	29,60	108,5	0,00	77,65	4,22	-3,00	0,00	0,00	78,87
WEA 21	2.015	2.015	24,24	103,1	0,00	77,09	4,79	-3,00	0,00	0,00	78,88
WEA 22	2.035	2.035	24,12	103,1	0,00	77,17	4,82	-3,00	0,00	0,00	79,00
WEA 24	2.834	2.834	20,05	103,1	0,00	80,05	6,01	-3,00	0,00	0,00	83,06
WEA 25	3.014	3.015	19,27	103,1	0,00	80,59	6,26	-3,00	0,00	0,00	83,85
WEA 26	3.195	3.195	18,52	103,1	0,00	81,09	6,50	-3,00	0,00	0,00	84,59
WEA 27	4.737	4.739	18,81	108,0	0,00	84,51	7,68	-3,00	0,00	0,00	89,20
WEA 28	5.086	5.089	17,80	108,0	0,00	85,13	8,07	-3,00	0,00	0,00	90,21
WEA 29	4.474	4.477	19,61	108,0	0,00	84,02	7,38	-3,00	0,00	0,00	88,40
WEA 30	5.160	5.162	17,59	108,0	0,00	85,26	8,16	-3,00	0,00	0,00	90,41
WEA 31	4.735	4.737	18,82	108,0	0,00	84,51	7,68	-3,00	0,00	0,00	89,19
WEA 32	5.561	5.563	16,51	108,0	0,00	85,91	8,59	-3,00	0,00	0,00	91,49
WEA 33	5.476	5.478	16,74	108,0	0,00	85,77	8,50	-3,00	0,00	0,00	91,27
WEA 34	6.311	6.313	12,85	106,1	0,00	87,00	9,30	-3,00	0,00	0,00	93,30
WEA 35	4.650	4.652	19,07	108,0	0,00	84,35	7,58	-3,00	0,00	0,00	88,93
WEA 36	4.339	4.341	20,04	108,0	0,00	83,75	7,22	-3,00	0,00	0,00	87,97
WEA 37	6.106	6.108	15,14	108,0	0,00	86,72	9,15	-3,00	0,00	0,00	92,87
WEA 38	5.146	5.149	17,63	108,0	0,00	85,23	8,14	-3,00	0,00	0,00	90,37
WEA 39	6.518	6.519	7,79	101,5	0,00	87,28	9,39	-3,00	0,00	0,00	93,68
WEA 40	4.920	4.922	14,57	104,2	0,00	84,84	7,82	-3,00	0,00	0,00	89,66
WEA 41	5.532	5.534	12,90	104,2	0,00	85,86	8,47	-3,00	0,00	0,00	91,33
WEA 42	5.306	5.308	11,67	102,4	0,00	85,50	8,19	-3,00	0,00	0,00	90,69
Summe			39,68								

Seite 32 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

Libendierter Anwender:
TÜV NORD EnSys GmbH & Co. KG Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

Berechnet: 09.02.2022 16:11/3.5.576

DECIBEL - Detaillierte Ergebnisse

Berechnung: VBSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: IP 02 Schall-Immissionsort: TA Lärm - Außenbereich (2)

Lautester Wert bis 95% Nennleistung WEA

WEN											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 02	2.688	2.693	24,25	107,1	0,00	79,60	6,24	-3,00	0,00	0,00	82,84
WEA 03	2.420	2.425	23,04	104,1	0,00	78,69	5,38	-3,00	0,00	0,00	81,07
WEA 04	2.042	2.047	25,10	104,1	0,00	77,22	4,78	-3,00	0,00	0,00	79,01
WEA 05	2.108	2.113	24,72	104,1	0,00	77,50	4,89	-3,00	0,00	0,00	79,39
WEA 06	1.727	1.733	27,08	104,1	0,00	75,78	4,25	-3,00	0,00	0,00	77,03
WEA 07	2.040	2.046	27,69	107,1	0,00	77,22	5,19	-3,00	0,00	0,00	79,40
WEA 08	1.727	1.733	29,69	107,1	0,00	75,78	4,62	-3,00	0,00	0,00	77,40
WEA 09	1.829	1.835	29,84	108,1	0,00	76,27	5,02	-3,00	0,00	0,00	78,29
WEA 10	2.136	2.141	27,56	106,6	0,00	77,61	4,41	-3,00	0,00	0,00	79,02
WEA 11	2.113	2.118	27,69	106,6	0,00	77,52	4,38	-3,00	0,00	0,00	78,90
WEA 12	2.364	2.368	26,37	106,6	0,00	78,49	4,73	-3,00	0,00	0,00	80,22
WEA 13	2.437	2.441	26,00	106,6	0,00	78,75	4,83	-3,00	0,00	0,00	80,58
WEA 14	2.124	2.124	24,61	104,1	0,00	77,54	4,97	-3,00	0,00	0,00	79,51
WEA 15	2.175	2.176	24,32	104,1	0,00	77,75	5,05	-3,00	0,00	0,00	79,80
WEA 16	2.233	2.234	24,00	104,1	0,00	77,98	5,14	-3,00	0,00	0,00	80,12
WEA 20	1.900	1.902	31,05	108,5	0,00	76,59	3,83	-3,00	0,00	0,00	77,41
WEA 21	2.203	2.203	23,17	103,1	0,00	77,86	5,09	-3,00	0,00	0,00	79,95
WEA 22	2.204	2.204	23,16	103,1	0,00	77,86	5,09	-3,00	0,00	0,00	79,95
WEA 24	2.949	2.949	19,55	103,1	0,00	80,39	6,17	-3,00	0,00	0,00	83,57
WEA 25	3.132	3.132	18,78	103,1	0,00	80,92	6,42	-3,00	0,00	0,00	84,34
WEA 26	3.315	3.315	18,04	103,1	0,00	81,41	6,66	-3,00	0,00	0,00	85,07
WEA 27	4.962	4.965	18,15	108,0	0,00	84,92	7,94	-3,00	0,00	0,00	89,85
WEA 28	5.308	5.310	17,19	108,0	0,00	85,50	8,32	-3,00	0,00	0,00	90,82
WEA 29	4.690	4.692	18,95	108,0	0,00	84,43	7,63	-3,00	0,00	0,00	89,05
WEA 30	5.375	5.377	17,01	108,0	0,00	85,61	8,39	-3,00	0,00	0,00	91,00
WEA 31	4.939	4.941	18,22	108,0	0,00	84,88	7,91	-3,00	0,00	0,00	89,79
WEA 32	5.777	5.779	15,96	108,0	0,00	86,24	8,81	-3,00	0,00	0,00	92,05
WEA 33	5.683	5.685	16,20	108,0	0,00	86,09	8,72	-3,00	0,00	0,00	91,81
WEA 34	6.527	6.529	12,35	106,1	0,00	87,30	9,51	-3,00	0,00	0,00	93,80
WEA 35	4.838	4.840	18,51	108,0	0,00	84,70	7,80	-3,00	0,00	0,00	89,49
WEA 36	4.515	4.518	19,48	108,0	0,00	84,10	7,42	-3,00	0,00	0,00	88,52
WEA 37	6.315	6.316	14,64	108,0	0,00	87,01	9,35	-3,00	0,00	0,00	93,36
WEA 38	5.338	5.340	17,11	108,0	0,00	85,55	8,35	-3,00	0,00	0,00	90,90
WEA 39	6.727	6.729	7,32	101,5	0,00	87,56	9,58	-3,00	0,00	0,00	94,14
WEA 40	5.098	5.100	14,07	104,2	0,00	85,15	8,01	-3,00	0,00	0,00	90,16
WEA 41	5.716	5.718	12,43	104,2	0,00	86,14	8,66	-3,00	0,00	0,00	91,80
WEA 42	5.479	5.481	11,21	102,4	0,00	85,78	8,37	-3,00	0,00	0,00	91,15
Summe			39,78								

Schall-Immissionsort: IP 03 Schall-Immissionsort: TA Lärm - Reines Wohngebiet / Kurgebiet (3)

Lautester Wert bis 95% Nennleistung

WEA												
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
WEA 02	3.652	3.655	20,23	107,1	0,00	82,26	7,60	-3,00	0,00	0,00	86,86	
WEA 03	3.320	3.324	19,04	104,1	0,00	81,43	6,64	-3,00	0,00	0,00	85,07	
WEA 04	2.907	2.911	20,75	104,1	0,00	80,28	6,08	-3,00	0,00	0,00	83,36	
WEA 05	3.087	3.091	19,98	104,1	0,00	80,80	6,33	-3,00	0,00	0,00	84,13	
WEA 06	2.748	2.751	21,46	104,1	0,00	79,79	5,86	-3,00	0,00	0,00	82,65	
WEA 07	3.112	3.115	22,35	107,1	0,00	80,87	6,87	-3,00	0,00	0,00	84,74	
WEA 08	2.852	2.855	23,49	107,1	0,00	80,11	6,49	-3,00	0,00	0,00	83,60	
WEA 09	3.003	3.007	23,60	108,1	0,00	80,56	6,97	-3,00	0,00	0,00	84,53	
WEA 10	3.275	3.278	22,40	106,6	0,00	81,31	5,87	-3,00	0,00	0,00	84,19	
WEA 11	3.299	3.302	22,31	106,6	0,00	81,38	5,90	-3,00	0,00	0,00	84,28	
WEA 12	3.531	3.534	21,46	106,6	0,00	81,97	6,16	-3,00	0,00	0,00	85,13	
WEA 13	3.622	3.625	21,13	106,6	0,00	82,19	6,26	-3,00	0,00	0,00	85,45	
WEA 14	1.955	1.956	25,59	104,1	0,00	76,83	4,70	-3,00	0,00	0,00	78,52	
WEA 15	2.156	2.157	24,42	104,1	0,00	77,68	5,02	-3,00	0,00	0,00	79,69	
WEA 16	2.310	2.311	23,58	104,1	0,00	78,28	5,25	-3,00	0,00	0,00	80,53	
WEA 20	1.885	1.887	31,15	108,5	0,00	76,51	3,80	-3,00	0,00	0,00	77,32	
WEA 21	3.338	3.338	17,95	103,1	0,00	81,47	6,69	-3,00	0,00	0,00	85,16	
WEA 22	3.364	3.364	17,85	103,1	0,00	81,54	6,72	-3,00	0,00	0,00	85,26	
WEA 24	4.136	4.136	15,12	103,1	0,00	83,33	7,67	-3,00	0,00	0,00	88,00	

(Fortsetzung nächste Seite)...

Seite 33 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

Literalerter Annender: TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

Berechnet: 09.02.2022 16:11/3.5.576

DECIBEL - Detaillierte Ergebnisse

Berechnung: VBSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

...(Fortsetzung von vorheriger Seite)

WEA												
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
WEA 25	4.319	4.319	14,53	103,1	0,00	83,71	7,88	-3,00	0,00	0,00	88,59	
WEA 26	4.502	4.502	13,96	103,1	0,00	84,07	8,08	-3,00	0,00	0,00	89,15	
WEA 27	5.978	5.979	15,46	108,0	0,00	86,53	9,02	-3,00	0,00	0,00	92,55	
WEA 28	6.337	6.339	14,59	108,0	0,00	87,04	9,38	-3,00	0,00	0,00	93,42	
WEA 29	5.747	5.749	16,03	108,0	0,00	86,19	8,78	-3,00	0,00	0,00	91,97	
WEA 30	6.434	6.435	14,37	108,0	0,00	87,17	9,47	-3,00	0,00	0,00	93,64	
WEA 31	6.031	6.033	15,32	108,0	0,00	86,61	9,07	-3,00	0,00	0,00	92,68	
WEA 32	6.830	6.831	13,47	108,0	0,00	87,69	9,85	-3,00	0,00	0,00	94,54	
WEA 33	6.766	6.768	13,61	108,0	0,00	87,61	9,79	-3,00	0,00	0,00	94,40	
WEA 34	7.578	7.579	10,09	106,1	0,00	88,59	10,46	-3,00	0,00	0,00	96,05	
WEA 35	5.969	5.970	15,48	108,0	0,00	86,52	9,01	-3,00	0,00	0,00	92,53	
WEA 36	5.665	5.667	16,24	108,0	0,00	86,07	8,70	-3,00	0,00	0,00	91,76	
WEA 37	7.392	7.393	12,27	108,0	0,00	88,38	10,36	-3,00	0,00	0,00	95,74	
WEA 38	6.461	6.463	14,30	108,0	0,00	87,21	9,50	-3,00	0,00	0,00	93,71	
WEA 39	7.800	7.801	5,10	101,5	0,00	88,84	10,52	-3,00	0,00	0,00	96,36	
WEA 40	6.244	6.246	11,14	104,2	0,00	86,91	9,18	-3,00	0,00	0,00	93,10	
WEA 41	6.853	6.855	9,76	104,2	0,00	87,72	9,76	-3,00	0,00	0,00	94,48	
WEA 42	6.633	6.635	8,43	102,4	0,00	87,44	9,50	-3,00	0,00	0,00	93,93	
Summe			36,57									

Schall-Immissionsort: IP 04 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (4)

Lautester Wert bis 95% Nennleistung

WEA											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 02	3.558	3.562	20,58	107,1	0,00	82,03	7,48	-3,00	0,00	0,00	86,51
WEA 03	3.223	3.227	19,42	104,1	0,00	81,17	6,51	-3,00	0,00	0,00	84,69
WEA 04	2.809	2.813	21,18	104,1	0,00	79,98	5,94	-3,00	0,00	0,00	82,93
WEA 05	2.997	3.000	20,36	104,1	0,00	80,54	6,21	-3,00	0,00	0,00	83,75
WEA 06	2.662	2.666	21,86	104,1	0,00	79,52	5,73	-3,00	0,00	0,00	82,25
WEA 07	3.031	3.034	22,70	107,1	0,00	80,64		-3,00	0,00	0,00	84,39
WEA 08	2.779	2.783	23,82	107,1	0,00	79,89		-3,00	0,00	0,00	83,27
WEA 09	2.943	2.947	23,86	108,1	0,00	80,39		-3,00	0,00	0,00	84,27
WEA 10	3.204	3.207	22,67	106,6	0,00	81,12	5,79	-3,00	0,00	0,00	83,91
WEA 11	3.247	3.250	22,51	106,6	0,00	81,24		-3,00	0,00	0,00	84,08
WEA 12	3.467	3.470	21,68	106,6	0,00	81,81		-3,00	0,00	0,00	84,90
WEA 13	3.569	3.572	21,32	106,6	0,00	82,06	6,21	-3,00	0,00	0,00	85,26
WEA 14	1.848	1.849	26,26	104,1	0,00	76,34		-3,00	0,00	0,00	77,86
WEA 15	2.045	2.046	25,06	104,1	0,00	77,22		-3,00	0,00	0,00	79,06
WEA 16	2.199	2.199	24,19	104,1	0,00	77,85		-3,00	0,00	0,00	79,93
WEA 20	1.773	1.776	31,86	108,5	0,00	75,99		-3,00	0,00	0,00	76,61
WEA 21	3.315	3.315	18,04	103,1	0,00	81,41		-3,00	0,00	0,00	85,07
WEA 22	3.333	3.334	17,97	103,1	0,00	81,46		-3,00	0,00	0,00	85,14
WEA 24	4.086	4.087	15,28	103,1	0,00	83,23		-3,00	0,00	0,00	87,84
WEA 25	4.270	4.271	14,68	103,1	0,00	83,61		-3,00	0,00	0,00	88,43
WEA 26	4.454	4.454	14,11	103,1	0,00	83,98		-3,00	0,00	0,00	89,00
WEA 27	5.982	5.984	15,44	108,0	0,00	86,54		-3,00	0,00	0,00	92,56
WEA 28	6.339	6.341	14,59	108,0	0,00	87,04		-3,00	0,00	0,00	93,42
WEA 29	5.744	5.746	16,04	108,0	0,00	86,19		-3,00	0,00	0,00	91,97
WEA 30	6.431	6.432	14,37	108,0	0,00	87,17		-3,00	0,00	0,00	93,63
WEA 31	6.021	6.023	15,35	108,0	0,00	86,60		-3,00	0,00	0,00	92,66
WEA 32	6.828	6.830	13,47	108,0	0,00	87,69		-3,00	0,00	0,00	94,53
WEA 33	6.758	6.760	13,63	108,0	0,00	87,60		-3,00	0,00	0,00	94,38
WEA 34	7.577	7.578	10,10	106,1	0,00	88,59		-3,00	0,00	0,00	96,05
WEA 35	5.949	5.951	15,53	108,0	0,00	86,49		-3,00	0,00	0,00	92,48
WEA 36	5.640	5.641	16,31	108,0	0,00	86,03		-3,00	0,00	0,00	91,70
WEA 37	7.386	7.387	12,28	108,0	0,00	88,37		-3,00	0,00	0,00	95,73
WEA 38	6.444	6.445	14,34	108,0	0,00	87,18		-3,00	0,00	0,00	93,67
WEA 39	7.795	7.796	5,11	101,5	0,00	88,84		-3,00	0,00	0,00	96,35
WEA 40	6.220	6.222	11,19	104,2	0,00	86,88		-3,00	0,00	0,00	93,04
WEA 41	6.832	6.834	9,80	104,2	0,00	87,69		-3,00	0,00	0,00	94,43
WEA 42	6.606	6.608	8,49	102,4	0,00	87,40	9,47	-3,00	0,00	0,00	93,87
Summe			37,03								

Seite 34 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Doniald

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

Libersierer Annwender: TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

Berechnet: 09.02.2022 16:11/3.5.576

DECIBEL - Detaillierte Ergebnisse

Berechnung: VBSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: IP 05 Schall-Immissionsort: TA Lärm - Außenbereich (5)

Lautester Wert bis 95% Nennleistung **WEA**

WEN												
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
WEA 02	2.101	2.108	27,32	107,1	0,00	77,48	5,29	-3,00	0,00	0,00	79,77	
WEA 03	1.712	1.720	27,17	104,1	0,00	75,71	4,23	-3,00	0,00	0,00	76,94	
WEA 04	1.315	1.325	30,16	104,1	0,00	73,44	3,51	-3,00	0,00	0,00	73,95	
WEA 05	1.648	1.656	27,61	104,1	0,00	75,38	4,12	-3,00	0,00	0,00	76,50	
WEA 06	1.482	1.490	28,83	104,1	0,00	74,46		-3,00	0,00	0,00	75,28	
WEA 07	1.878	1.884	28,69	107,1	0,00	76,50	4,90	-3,00	0,00	0,00	78,40	
WEA 08	1.849	1.856	28,87	107,1	0,00	76,37	4,85	-3,00	0,00	0,00	78,22	
WEA 09	2.216	2.222	27,48	108,1	0,00	77,93	5,71	-3,00	0,00	0,00	80,65	
WEA 10	2.231	2.236	27,05	106,6	0,00	77,99	4,55	-3,00	0,00	0,00	79,54	
WEA 11	2.609	2.614	25,18	106,6	0,00	79,35	5,06	-3,00	0,00	0,00	81,40	
WEA 12	2.591	2.596	25,27	106,6	0,00	79,29	5,03	-3,00	0,00	0,00	81,32	
WEA 13	2.859	2.863	24,07	106,6	0,00	80,14	5,38	-3,00	0,00	0,00	82,51	
WEA 14	897	899	34,31	104,1	0,00	70,08	2,73	-3,00	0,00	0,00	69,81	
WEA 15	790	792	35,64	104,1	0,00	68,98	2,49	-3,00	0,00	0,00	68,47	
WEA 16	773	776	35,87	104,1	0,00	68,79	2,46	-3,00	0,00	0,00	68,25	
WEA 20	601	608	43,31	108,5	0,00	66,68	1,48	-3,00	0,00	0,00	65,16	
WEA 21	3.142	3.143	18,73	103,1	0,00	80,95	6,43	-3,00	0,00	0,00	84,38	
WEA 22	3.042	3.042	19,15	103,1	0,00	80,66	6,30	-3,00	0,00	0,00	83,96	
WEA 24	3.390	3.390	17,75	103,1	0,00	81,60	6,76	-3,00	0,00	0,00	85,36	
WEA 25	3.569	3.569	17,08	103,1	0,00	82,05	6,98	-3,00	0,00	0,00	86,04	
WEA 26	3.748	3.748	16,43	103,1	0,00	82,48	7,21	-3,00	0,00	0,00	86,68	
WEA 27	6.010	6.012	15,38	108,0	0,00	86,58	9,05	-3,00	0,00	0,00	92,63	
WEA 28	6.322	6.324	14,63	108,0	0,00	87,02	9,36	-3,00	0,00	0,00	93,38	
WEA 29	5.666	5.668	16,24	108,0	0,00	86,07	8,70	-3,00	0,00	0,00	91,77	
WEA 30	6.325	6.327	14,62	108,0	0,00	87,02	9,36	-3,00	0,00	0,00	93,39	
WEA 31	5.823	5.825	15,84	108,0	0,00	86,31	8,86	-3,00	0,00	0,00	92,17	
WEA 32	6.730	6.731	13,69	108,0	0,00	87,56	9,75	-3,00	0,00	0,00	94,32	
WEA 33	6.567	6.569	14,06	108,0	0,00	87,35	9,60	-3,00	0,00	0,00	93,95	
WEA 34	7.469	7.470	10,31	106,1	0,00	88,47	10,37	-3,00	0,00	0,00	95,83	
WEA 35	5.608	5.610	16,39	108,0	0,00	85,98	8,64	-3,00	0,00	0,00	91,62	
WEA 36	5.222	5.224	17,42	108,0	0,00	85,36	8,22	-3,00	0,00	0,00	90,58	
WEA 37	7.198	7.199	12,67	108,0	0,00	88,15	10,19	-3,00	0,00	0,00	95,33	
WEA 38	6.115	6.117	15,12	108,0	0,00	86,73	9,16	-3,00	0,00	0,00	92,89	
WEA 39	7.615	7.616	5,47	101,5	0,00	88,63	10,36	-3,00	0,00	0,00	96,00	
WEA 40	5.797	5.799	12,22	104,2	0,00	86,27	8,74	-3,00	0,00	0,00	92,01	
WEA 41	6.432	6.434	10,70	104,2	0,00	87,17	9,36	-3,00	0,00	0,00	93,53	
WEA 42	6.125	6.127	9,60	102,4	0,00	86,75	9,02	-3,00	0,00	0,00	92,76	
Summe			45,94								5	

Schall-Immissionsort: IP 06 Schall-Immissionsort: TA Lärm - Außenbereich (6)

Lautester Wert bis 95% Nennleistung

WEA												
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
WEA 02	1.882	1.889	28,66	107,1	0,00	76,52	4,91	-3,00	0,00	0,00	78,43	
WEA 03	1.489	1.498	28,77	104,1	0,00	74,51	3,83	-3,00	0,00	0,00	75,34	
WEA 04	1.103	1.114	32,08	104,1	0,00	71,94	3,09	-3,00	0,00	0,00	72,02	
WEA 05	1.457	1.465	29,02	104,1	0,00	74,32	3,77	-3,00	0,00	0,00	75,09	
WEA 06	1.333	1.342	30,02	104,1	0,00	73,55	3,54	-3,00	0,00	0,00	74,09	
WEA 07	1.717	1.724	29,75	107,1	0,00	75,73	4,61	-3,00	0,00	0,00	77,34	
WEA 08	1.733	1.740	29,64	107,1	0,00	75,81	4,64	-3,00	0,00	0,00	77,45	
WEA 09	2.122	2.127	28,02	108,1	0,00	77,56	5,55	-3,00	0,00	0,00	80,11	
WEA 10	2.092	2.098	27,80	106,6	0,00	77,44	4,35	-3,00	0,00	0,00	78,79	
WEA 11	2.517	2.521	25,62	106,6	0,00	79,03	4,94	-3,00	0,00	0,00	80,97	
WEA 12	2.459	2.464	25,89	106,6	0,00	78,83	4,86	-3,00	0,00	0,00	80,70	
WEA 13	2.748	2.752	24,55	106,6	0,00	79,79	5,24	-3,00	0,00	0,00	82,03	
WEA 14	1.035	1.036	32,78	104,1	0,00	71,31	3,02	-3,00	0,00	0,00	71,33	
WEA 15	864	866	34,71	104,1	0,00	69,75	2,66	-3,00	0,00	0,00	69,41	
WEA 16	785	788	35,70	104,1	0,00	68,93	2,48	-3,00	0,00	0,00	68,42	
WEA 20	744	750	41,19	108,5	0,00	68,50	1,77	-3,00	0,00	0,00	67,27	
WEA 21	3.108	3.108	18,88	103,1	0,00	80,85	6,39	-3,00	0,00	0,00	84,24	
WEA 22	2.992	2.992	19,36	103,1	0,00	80,52	6,23	-3,00	0,00	0,00	83,75	
WEA 24	3.271	3.271	18,22	103,1	0,00	81,29	6,60	-3,00	0,00	0,00	84,90	

(Fortsetzung nächste Seite)...

Seite 35 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Doniald

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

Literaterter Annender: TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

Berechnet: 09.02.2022 16:11/3.5.576

DECIBEL - Detaillierte Ergebnisse

Berechnung: VBSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

...(Fortsetzung von vorheriger Seite)

WEA											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 25	3.446	3.447	17,54	103,1	0,00	81,75	6,83	-3,00	0,00	0,00	85,58
WEA 26	3.622	3.623	16,88	103,1	0,00	82,18	7,05	-3,00	0,00	0,00	86,23
WEA 27	5.968	5.970	15,48	108,0	0,00	86,52	9,01	-3,00	0,00	0,00	92,53
WEA 28	6.271	6.273	14,74	108,0	0,00	86,95	9,31	-3,00	0,00	0,00	93,26
WEA 29	5.611	5.613	16,38	108,0	0,00	85,98	8,64	-3,00	0,00	0,00	91,62
WEA 30	6.262	6.264	14,77	108,0	0,00	86,94	9,30	-3,00	0,00	0,00	93,24
WEA 31	5.751	5.753	16,02	108,0	0,00	86,20	8,79	-3,00	0,00	0,00	91,98
WEA 32	6.665	6.667	13,83	108,0	0,00	87,48	9,69	-3,00	0,00	0,00	94,17
WEA 33	6.491	6.493	14,23	108,0	0,00	87,25	9,53	-3,00	0,00	0,00	93,78
WEA 34	7.400	7.401	10,46	106,1	0,00	88,39	10,31	-3,00	0,00	0,00	95,69
WEA 35	5.517	5.519	16,63	108,0	0,00	85,84	8,54	-3,00	0,00	0,00	91,38
WEA 36	5.123	5.125	17,70	108,0	0,00	85,19	8,12	-3,00	0,00	0,00	90,31
WEA 37	7.119	7.121	12,84	108,0	0,00	88,05	10,12	-3,00	0,00	0,00	95,17
WEA 38	6.023	6.025	15,34	108,0	0,00	86,60	9,06	-3,00	0,00	0,00	92,66
WEA 39	7.536	7.537	5,62	101,5	0,00	88,54	10,29	-3,00	0,00	0,00	95,84
WEA 40	5.693	5.695	12,48	104,2	0,00	86,11	8,64	-3,00	0,00	0,00	91,75
WEA 41	6.328	6.330	10,94	104,2	0,00	87,03	9,26	-3,00	0,00	0,00	93,29
WEA 42	6.012	6.014	9,87	102,4	0,00	86,58	8,91	-3,00	0,00	0,00	92,49
Summe			44,99								

Schall-Immissionsort: IP 07 Schall-Immissionsort: TA Lärm - Außenbereich (7)

Lautester Wert bis 95% Nennleistung

WEA											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 02	1.835	1.842	28,96	107,1	0,00	76,31	4,82	-3,00	0,00	0,00	78,13
WEA 03	1.438	1.447	29,16	104,1	0,00	74,21	3,74	-3,00	0,00	0,00	74,95
WEA 04	1.087	1.097	32,25	104,1	0,00	71,81	3,05	-3,00	0,00	0,00	71,86
WEA 05	1.469	1.477	28,93	104,1	0,00	74,39	3,79	-3,00	0,00	0,00	75,18
WEA 06	1.407	1.415	29,41	104,1	0,00	74,02		-3,00	0,00	0,00	74,70
WEA 07	1.770	1.777	29,40	107,1	0,00	75,99		-3,00	0,00	0,00	77,69
WEA 08	1.835	1.842	28,96	107,1	0,00	76,30		-3,00	0,00	0,00	78,13
WEA 09	2.239	2.245	27,35	108,1	0,00	78,02		-3,00	0,00	0,00	80,78
WEA 10	2.167	2.172	27,39	106,6	0,00	77,74		-3,00	0,00	0,00	79,19
WEA 11	2.633	2.638	25,07	106,6	0,00	79,42		-3,00	0,00	0,00	81,51
WEA 12	2.538	2.543	25,52	106,6	0,00	79,11		-3,00	0,00	0,00	81,07
WEA 13	2.846	2.850	24,13	106,6	0,00	80,10		-3,00	0,00	0,00	82,46
WEA 14	1.031	1.032	32,83	104,1	0,00	71,27	3,01	-3,00	0,00	0,00	71,29
WEA 15	805	808	35,44	104,1	0,00	69,15		-3,00	0,00	0,00	68,67
WEA 16	676	679	37,24	104,1	0,00	67,64		-3,00	0,00	0,00	66,87
WEA 20	766	771	40,91	108,5	0,00	68,75	1,81	-3,00	0,00	0,00	67,56
WEA 21	3.267	3.267	18,23	103,1	0,00	81,28		-3,00	0,00	0,00	84,88
WEA 22	3.140	3.141	18,74	103,1	0,00	80,94		-3,00	0,00	0,00	84,37
WEA 24	3.358	3.359	17,87	103,1	0,00	81,52		-3,00	0,00	0,00	85,24
WEA 25	3.529	3.530	17,22	103,1	0,00	81,96		-3,00	0,00	0,00	85,89
WEA 26	3.702	3.702	16,60	103,1	0,00	82,37		-3,00	0,00	0,00	86,52
WEA 27	6.116	6.117	15,12	108,0	0,00	86,73		-3,00	0,00	0,00	92,89
WEA 28	6.413	6.415	14,41	108,0	0,00	87,14		-3,00	0,00	0,00	93,59
WEA 29	5.750	5.752	16,03	108,0	0,00	86,20		-3,00	0,00	0,00	91,98
WEA 30	6.394	6.396	14,46	108,0	0,00	87,12		-3,00	0,00	0,00	93,55
WEA 31	5.875	5.877	15,71	108,0	0,00	86,38		-3,00	0,00	0,00	92,30
WEA 32	6.796	6.797	13,54	108,0	0,00	87,65		-3,00	0,00	0,00	94,46
WEA 33	6.612	6.613	13,96	108,0	0,00	87,41		-3,00	0,00	0,00	94,05
WEA 34	7.526	7.527	10,20	106,1	0,00	88,53	10,42		0,00	0,00	95,95
WEA 35	5.626	5.628	16,34	108,0	0,00	86,01		-3,00	0,00	0,00	91,66
WEA 36	5.225	5.227	17,41	108,0	0,00	85,37		-3,00	0,00	0,00	90,59
WEA 37	7.237	7.239	12,59	108,0	0,00	88,19		-3,00	0,00	0,00	95,42
WEA 38	6.130	6.132	15,08	108,0	0,00	86,75		-3,00	0,00	0,00	92,92
WEA 39	7.653	7.654	5,39	101,5	0,00	88,68	10,39		0,00	0,00	96,07
WEA 40	5.790	5.792	12,24	104,2	0,00	86,26		-3,00	0,00	0,00	91,99
WEA 41	6.424	6.425	10,72	104,2	0,00	87,16		-3,00	0,00	0,00	93,51
WEA 42	6.099	6.101	9,66	102,4	0,00	86,71	8,99	-3,00	0,00	0,00	92,70
Summe			45,10								

Seite 36 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

Libendierter Anwender:
TÜV NORD EnSys GmbH & Co. KG Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

09.02.2022 16:11/3.5.576

DECIBEL - Detaillierte Ergebnisse

Berechnung: VBSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s Schall-Immissionsort: IP 08 Schall-Immissionsort: TA Lärm - Außenbereich (8)

Lautester Wert bis 95% Nennleistung

WEA											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 02	1.888	1.894	28,62	107,1	0,00	76,55	4,92	-3,00	0,00	0,00	78,47
WEA 03	1.513	1.521	28,59	104,1	0,00	74,64	3,88	-3,00	0,00	0,00	75,52
WEA 04	1.286	1.295	30,42	104,1	0,00	73,25	3,45	-3,00	0,00	0,00	73,69
WEA 05	1.687	1.694	27,35	104,1	0,00	75,58	4,19	-3,00	0,00	0,00	76,76
WEA 06	1.751	1.758	26,91	104,1	0,00	75,90	4,30	-3,00	0,00	0,00	77,20
WEA 07	2.051	2.056	27,62	107,1	0,00	77,26	5,20	-3,00	0,00	0,00	79,47
WEA 08	2.210	2.215	26,71	107,1	0,00	77,91	5,48	-3,00	0,00	0,00	80,38
WEA 09	2.631	2.636	25,31	108,1	0,00	79,42	6,40	-3,00	0,00	0,00	82,82
WEA 10	2.475	2.479	25,82	106,6	0,00	78,89	4,88	-3,00	0,00	0,00	80,77
WEA 11	3.014	3.018	23,43	106,6	0,00	80,59	5,57	-3,00	0,00	0,00	83,16
WEA 12	2.844	2.849	24,14	106,6	0,00	80,09		-3,00	0,00	0,00	82,45
WEA 13	3.186	3.190	22,74	106,6	0,00	81,08	5,77	-3,00	0,00	0,00	83,85
WEA 14	1.191	1.192	31,25	104,1	0,00	72,53	3,34	-3,00	0,00	0,00	72,86
WEA 15	897	899	34,30	104,1	0,00	70,08		-3,00	0,00	0,00	69,81
WEA 16	688	691	37,07	104,1	0,00	67,79		-3,00	0,00	0,00	67,04
WEA 20	1.035	1.039	37,81	108,5	0,00	71,33	2,33	-3,00	0,00	0,00	70,66
WEA 21	3.723	3.724	16,52	103,1	0,00	82,42		-3,00	0,00	0,00	86,60
WEA 22	3.578	3.578	17,05	103,1	0,00	82,07	7,00	-3,00	0,00	0,00	86,07
WEA 24	3.668	3.669	16,72	103,1	0,00	82,29		-3,00	0,00	0,00	86,40
WEA 25	3.828	3.828	16,15	103,1	0,00	82,66		-3,00	0,00	0,00	86,96
WEA 26	3.989	3.990	15,60	103,1	0,00	83,02		-3,00	0,00	0,00	87,51
WEA 27	6.536	6.538	14,13	108,0	0,00	87,31		-3,00	0,00	0,00	93,88
WEA 28	6.819	6.820	13,49	108,0	0,00	87,68		-3,00	0,00	0,00	94,51
WEA 29	6.152	6.154	15,03	108,0	0,00	86,78		-3,00	0,00	0,00	92,98
WEA 30	6.779	6.781	13,58	108,0	0,00	87,63		-3,00	0,00	0,00	94,43
WEA 31	6.246	6.248	14,80	108,0	0,00	86,91		-3,00	0,00	0,00	93,20
WEA 32	7.177	7.178	12,72	108,0	0,00	88,12			0,00	0,00	95,29
WEA 33	6.972	6.973	13,16	108,0	0,00	87,87		-3,00	0,00	0,00	94,85
WEA 34	7.895	7.896	9,47	106,1	0,00	88,95			0,00	0,00	96,68
WEA 35	5.963	5.965	15,49	108,0	0,00	86,51		-3,00	0,00	0,00	92,52
WEA 36	5.550	5.552	16,54	108,0	0,00	85,89		-3,00	0,00	0,00	91,47
WEA 37	7.589	7.591	11,87	108,0	0,00	88,61	10,54		0,00	0,00	96,14
WEA 38	6.461	6.462	14,30	108,0	0,00	87,21		-3,00	0,00	0,00	93,70
WEA 39	8.001	8.003	4,72	101,5	0,00	89,06	10,68		0,00	0,00	96,75
WEA 40	6.100	6.102	11,48	104,2	0,00	86,71		-3,00	0,00	0,00	92,75
WEA 41	6.728	6.730	10,03	104,2	0,00	87,56		-3,00	0,00	0,00	94,20
WEA 42	6.385	6.387	8,99	102,4	0,00	87,11	9,27	-3,00	0,00	0,00	93,37
Summe			43,37								

Schall-Immissionsort: IP 09 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (9)

Lautester Wert bis 95% Nennleistung

WEA												
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
WEA 02	2.530	2.534	25,02	107,1	0,00	79,08	6,00	-3,00	0,00	0,00	82,07	
WEA 03	2.205	2.211	24,17	104,1	0,00	77,89	5,04	-3,00	0,00	0,00	79,94	
WEA 04	2.074	2.079	24,92	104,1	0,00	77,36	4,83	-3,00	0,00	0,00	79,19	
WEA 05	2.460	2.464	22,84	104,1	0,00	78,83	5,43	-3,00	0,00	0,00	81,27	
WEA 06	2.582	2.586	22,24	104,1	0,00	79,25	5,62	-3,00	0,00	0,00	81,87	
WEA 07	2.844	2.848	23,52	107,1	0,00	80,09	6,48	-3,00	0,00	0,00	83,57	
WEA 08	3.044	3.048	22,64	107,1	0,00	80,68	6,77	-3,00	0,00	0,00	84,45	
WEA 09	3.468	3.471	21,69	108,1	0,00	81,81	7,63	-3,00	0,00	0,00	86,44	
WEA 10	3.273	3.276	22,41	106,6	0,00	81,31	5,87	-3,00	0,00	0,00	84,18	
WEA 11	3.843	3.846	20,38	106,6	0,00	82,70	6,50	-3,00	0,00	0,00	86,20	
WEA 12	3.635	3.638	21,09	106,6	0,00	82,22	6,28	-3,00	0,00	0,00	85,50	
WEA 13	3.993	3.995	19,90	106,6	0,00	83,03	6,66	-3,00	0,00	0,00	86,69	
WEA 14	1.524	1.525	28,49	104,1	0,00	74,67	3,96	-3,00	0,00	0,00	75,63	
WEA 15	1.273	1.274	30,51	104,1	0,00	73,11	3,50	-3,00	0,00	0,00	73,60	
WEA 16	1.109	1.110	32,03	104,1	0,00	71,91	3,17	-3,00	0,00	0,00	72,08	
WEA 20	1.535	1.537	33,51	108,5	0,00	74,73	3,22	-3,00	0,00	0,00	74,95	
WEA 21	4.579	4.579	13,73	103,1	0,00	84,22	8,17	-3,00	0,00	0,00	89,38	
WEA 22	4.427	4.427	14,19	103,1	0,00	83,92	8,00	-3,00	0,00	0,00	88,92	
WEA 24	4.451	4.451	14,12	103,1	0,00	83,97	8,03	-3,00	0,00	0,00	89,00	

(Fortsetzung nächste Seite)...

Seite 37 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Deviale

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

Literaterter Annender: TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

Berechnet: 09.02.2022 16:11/3.5.576

DECIBEL - Detaillierte Ergebnisse

Berechnung: VBSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

...(Fortsetzung von vorheriger Seite)

WEA											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 25	4.601	4.601	13,67	103,1	0,00	84,26	8,19	-3,00	0,00	0,00	89,45
WEA 26	4.753	4.753	13,22	103,1	0,00	84,54	8,36	-3,00	0,00	0,00	89,90
WEA 27	7.372	7.373	12,31	108,0	0,00	88,35	10,34	-3,00	0,00	0,00	95,70
WEA 28	7.646	7.647	11,75	108,0	0,00	88,67	10,59	-3,00	0,00	0,00	96,26
WEA 29	6.979	6.981	13,14	108,0	0,00	87,88	9,99	-3,00	0,00	0,00	94,87
WEA 30	7.594	7.596	11,86	108,0	0,00	88,61	10,54	-3,00	0,00	0,00	96,15
WEA 31	7.054	7.055	12,98	108,0	0,00	87,97	10,06	-3,00	0,00	0,00	95,03
WEA 32	7.988	7.990	11,08	108,0	0,00	89,05	10,88	-3,00	0,00	0,00	96,93
WEA 33	7.770	7.772	11,50	108,0	0,00	88,81	10,69	-3,00	0,00	0,00	96,50
WEA 34	8.697	8.698	7,97	106,1	0,00	89,79	11,39	-3,00	0,00	0,00	98,18
WEA 35	6.750	6.751	13,65	108,0	0,00	87,59	9,77	-3,00	0,00	0,00	94,36
WEA 36	6.330	6.331	14,61	108,0	0,00	87,03	9,37	-3,00	0,00	0,00	93,40
WEA 37	8.381	8.382	10,34	108,0	0,00	89,47	11,20	-3,00	0,00	0,00	97,67
WEA 38	7.240	7.242	12,58	108,0	0,00	88,20	10,23	-3,00	0,00	0,00	95,42
WEA 39	8.790	8.791	3,28	101,5	0,00	89,88	11,30	-3,00	0,00	0,00	98,18
WEA 40	6.866	6.867	9,73	104,2	0,00	87,74	9,77	-3,00	0,00	0,00	94,50
WEA 41	7.487	7.489	8,42	104,2	0,00	88,49	10,32	-3,00	0,00	0,00	95,81
WEA 42	7.131	7.132	7,35	102,4	0,00	88,06	9,94	-3,00	0,00	0,00	95,01
Summe			39,21								

Schall-Immissionsort: IP 10 Schall-Immissionsort: TA Lärm - Außenbereich (10)

WEA												
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
WEA 02	1.235	1.244	33,55	107,1	0,00	72,90	3,64	-3,00	0,00	0,00	73,54	
WEA 03	991	1.003	33,24	104,1	0,00	71,02	2,85	-3,00	0,00	0,00	70,87	
WEA 04	1.067	1.077	32,45	104,1	0,00	71,65	3,01	-3,00	0,00	0,00	71,65	
WEA 05	1.348	1.356	29,90	104,1	0,00	73,65	3,57	-3,00	0,00	0,00	74,21	
WEA 06	1.620	1.627	27,82	104,1	0,00	75,23	4,07	-3,00	0,00	0,00	76,29	
WEA 07	1.741	1.747	29,60	107,1	0,00	75,85	4,65	-3,00	0,00	0,00	77,49	
WEA 08	2.049	2.055	27,63	107,1	0,00	77,25	5,20	-3,00	0,00	0,00	79,46	
WEA 09	2.455	2.460	26,19	108,1	0,00	78,82	6,12	-3,00	0,00	0,00	81,93	
WEA 10	2.152	2.157	27,47	106,6	0,00	77,68	4,44	-3,00	0,00	0,00	79,11	
WEA 11	2.782	2.786	24,41	106,6	0,00	79,90	5,28	-3,00	0,00	0,00	82,18	
WEA 12	2.481	2.486	25,79	106,6	0,00	78,91	4,89	-3,00	0,00	0,00	80,80	
WEA 13	2.860	2.864	24,07	106,6	0,00	80,14	5,38	-3,00	0,00	0,00	82,52	
WEA 14	2.151	2.152	24,45	104,1	0,00	77,66	5,01	-3,00	0,00	0,00	79,67	
WEA 15	1.861	1.862	26,18	104,1	0,00	76,40	4,54	-3,00	0,00	0,00	77,94	
WEA 16	1.653	1.654	27,55	104,1	0,00	75,37	4,19	-3,00	0,00	0,00	76,56	
WEA 20	1.966	1.967	30,66	108,5	0,00	76,88	3,93	-3,00	0,00	0,00	77,81	
WEA 21	3.620	3.621	16,89	103,1	0,00	82,18	7,05	-3,00	0,00	0,00	86,22	
WEA 22	3.434	3.435	17,58	103,1	0,00	81,72	6,81	-3,00	0,00	0,00	85,53	
WEA 24	3.257	3.257	18,27	103,1	0,00	81,26	6,59	-3,00	0,00	0,00	84,84	
WEA 25	3.388	3.389	17,76	103,1	0,00	81,60	6,76	-3,00	0,00	0,00	85,36	
WEA 26	3.524	3.525	17,24	103,1	0,00	81,94	6,93	-3,00	0,00	0,00	85,87	
WEA 27	6.269	6.271	14,75	108,0	0,00	86,95	9,31	-3,00	0,00	0,00	93,26	
WEA 28	6.515	6.516	14,18	108,0	0,00	87,28	9,55	-3,00	0,00	0,00	93,83	
WEA 29	5.852	5.853	15,77	108,0	0,00	86,35		-3,00	0,00	0,00	92,24	
WEA 30	6.431	6.433	14,37	108,0	0,00	87,17	9,47	-3,00	0,00	0,00	93,64	
WEA 31	5.877	5.879	15,70	108,0	0,00	86,39	8,92	-3,00	0,00	0,00	92,30	
WEA 32	6.815	6.816	13,50	108,0	0,00	87,67	9,83	-3,00	0,00	0,00	94,51	
WEA 33	6.571	6.572	14,05	108,0	0,00	87,35	9,60	-3,00	0,00	0,00	93,96	
WEA 34	7.501	7.502	10,25	106,1	0,00	88,50	10,40	-3,00	0,00	0,00	95,90	
WEA 35	5.535	5.537	16,58	108,0	0,00	85,86	8,56	-3,00	0,00	0,00	91,42	
WEA 36	5.107	5.109	17,74	108,0	0,00	85,17		-3,00	0,00	0,00	90,26	
WEA 37	7.165	7.167	12,74	108,0	0,00	88,11	10,16	-3,00	0,00	0,00	95,26	
WEA 38	6.012	6.014	15,37	108,0	0,00	86,58	9,05	-3,00	0,00	0,00	92,64	
WEA 39	7.568	7.569	5,56	101,5	0,00	88,58		-3,00	0,00	0,00	95,90	
WEA 40	5.620	5.622	12,67	104,2	0,00	86,00	8,56	-3,00	0,00	0,00	91,56	
WEA 41	6.230	6.232	11,17	104,2	0,00	86,89	9,17	-3,00	0,00	0,00	93,06	
WEA 42	5.860	5.862	10,24	102,4	0,00	86,36	8,76	-3,00	0,00	0,00	92,12	
Summe			41,53									

Seite 38 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

Libendierter Anwender:
TÜV NORD EnSys GmbH & Co. KG Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

09.02.2022 16:11/3.5.576

DECIBEL - Detaillierte Ergebnisse

Berechnung: VBSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s Schall-Immissionsort: IP 11 Schall-Immissionsort: TA Lärm - Außenbereich (11)

Lautester Wert bis 95% Nennleistung

WEA											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 02	1.191	1.200	33,96	107,1	0,00	72,58	3,55	-3,00	0,00	0,00	73,13
WEA 03	1.160	1.169	31,55	104,1	0,00	72,36	3,20	-3,00	0,00	0,00	72,56
WEA 04	1.433	1.440	29,22	104,1	0,00	74,17	3,72	-3,00	0,00	0,00	74,89
WEA 05	1.563	1.569	28,23	104,1	0,00	74,91	3,96	-3,00	0,00	0,00	75,87
WEA 06	1.922	1.927	25,83	104,1	0,00	76,70	4,58	-3,00	0,00	0,00	78,28
WEA 07	1.905	1.910	28,53	107,1	0,00	76,62	4,95	-3,00	0,00	0,00	78,56
WEA 08	2.278	2.282	26,34	107,1	0,00	78,17	5,59	-3,00	0,00	0,00	80,75
WEA 09	2.636	2.640	25,29	108,1	0,00	79,43	6,41	-3,00	0,00	0,00	82,84
WEA 10	2.255	2.259	26,93	106,6	0,00	78,08	4,58	-3,00	0,00	0,00	79,66
WEA 11	2.901	2.904	23,90	106,6	0,00	80,26	5,43	-3,00	0,00	0,00	82,69
WEA 12	2.523	2.527	25,59	106,6	0,00	79,05	4,94	-3,00	0,00	0,00	81,00
WEA 13	2.904	2.908	23,88	106,6	0,00	80,27	5,43	-3,00	0,00	0,00	82,70
WEA 14	2.812	2.813	21,15	104,1	0,00	79,98		-3,00	0,00	0,00	82,97
WEA 15	2.521	2.521	22,51	104,1	0,00	79,03	5,57	-3,00	0,00	0,00	81,60
WEA 16	2.312	2.313	23,58	104,1	0,00	78,28		-3,00	0,00	0,00	80,54
WEA 20	2.627	2.628	27,14	108,5	0,00	79,39	4,94	-3,00	0,00	0,00	81,33
WEA 21	3.786	3.787	16,30	103,1	0,00	82,56	7,25	-3,00	0,00	0,00	86,82
WEA 22	3.581	3.581	17,04	103,1	0,00	82,08		-3,00	0,00	0,00	86,08
WEA 24	3.213	3.213	18,45	103,1	0,00	81,14		-3,00	0,00	0,00	84,67
WEA 25	3.316	3.316	18,04	103,1	0,00	81,41		-3,00	0,00	0,00	85,07
WEA 26	3.425	3.425	17,62	103,1	0,00	81,69		-3,00	0,00	0,00	85,50
WEA 27	6.261	6.263	14,77	108,0	0,00	86,94		-3,00	0,00	0,00	93,24
WEA 28	6.476	6.477	14,27	108,0	0,00	87,23		-3,00	0,00	0,00	93,74
WEA 29	5.824	5.826	15,84	108,0	0,00	86,31		-3,00	0,00	0,00	92,17
WEA 30	6.361	6.362	14,54	108,0	0,00	87,07		-3,00	0,00	0,00	93,47
WEA 31	5.798	5.800	15,90	108,0	0,00	86,27		-3,00	0,00	0,00	92,10
WEA 32	6.729	6.730	13,69	108,0	0,00	87,56		-3,00	0,00	0,00	94,31
WEA 33	6.458	6.459	14,31	108,0	0,00	87,20		-3,00	0,00	0,00	93,70
WEA 34	7.385	7.386	10,49	106,1	0,00	88,37			0,00	0,00	95,66
WEA 35	5.415	5.416	16,90	108,0	0,00	85,67		-3,00	0,00	0,00	91,11
WEA 36	4.982	4.984	18,10	108,0	0,00	84,95		-3,00	0,00	0,00	89,91
WEA 37	7.029	7.030	13,03	108,0	0,00	87,94	10,03		0,00	0,00	94,97
WEA 38	5.869	5.871	15,73	108,0	0,00	86,37		-3,00	0,00	0,00	92,28
WEA 39	7.420	7.421	5,86	101,5	0,00	88,41	10,20		0,00	0,00	95,61
WEA 40	5.457	5.459	13,10	104,2	0,00	85,74		-3,00	0,00	0,00	91,13
WEA 41	6.044	6.046	11,61	104,2	0,00	86,63		-3,00	0,00	0,00	92,62
WEA 42	5.657	5.659	10,75	102,4	0,00	86,05	8,55	-3,00	0,00	0,00	91,61
Summe			40,18								

Schall-Immissionsort: IP 12 Schall-Immissionsort: TA Lärm - Außenbereich (12)

Lautester Wert bis 95% Nennleistung

WEA												
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
WEA 02	1.426	1.434	31,92	107,1	0,00	74,13	4,04	-3,00	0,00	0,00	75,17	
WEA 03	1.449	1.456	29,09	104,1	0,00	74,27	3,76	-3,00	0,00	0,00	75,02	
WEA 04	1.743	1.749	26,97	104,1	0,00	75,86	4,28	-3,00	0,00	0,00	77,14	
WEA 05	1.848	1.854	26,29	104,1	0,00	76,36	4,46	-3,00	0,00	0,00	77,82	
WEA 06	2.218	2.222	24,11	104,1	0,00	77,94	5,06	-3,00	0,00	0,00	80,00	
WEA 07	2.172	2.177	26,92	107,1	0,00	77,76	5,41	-3,00	0,00	0,00	80,17	
WEA 08	2.555	2.559	24,89	107,1	0,00	79,16	6,03	-3,00	0,00	0,00	82,20	
WEA 09	2.898	2.901	24,06	108,1	0,00	80,25	6,81	-3,00	0,00	0,00	84,06	
WEA 10	2.501	2.505	25,70	106,6	0,00	78,98	4,91	-3,00	0,00	0,00	80,89	
WEA 11	3.142	3.146	22,91	106,6	0,00	80,95	5,72	-3,00	0,00	0,00	83,67	
WEA 12	2.745	2.749	24,57	106,6	0,00	79,78	5,23	-3,00	0,00	0,00	82,02	
WEA 13	3.123	3.126	22,99	106,6	0,00	80,90	5,70	-3,00	0,00	0,00	83,59	
WEA 14	3.082	3.082	19,98	104,1	0,00	80,78	6,35	-3,00	0,00	0,00	84,13	
WEA 15	2.788	2.789	21,26	104,1	0,00	79,91	5,95	-3,00	0,00	0,00	82,86	
WEA 16	2.578	2.578	22,24	104,1	0,00	79,23	5,65	-3,00	0,00	0,00	81,88	
WEA 20	2.909	2.910	25,84	108,5	0,00	80,28	5,34	-3,00	0,00	0,00	82,62	
WEA 21	4.035	4.036	15,45	103,1	0,00	83,12	7,55	-3,00	0,00	0,00	87,67	
WEA 22	3.825	3.825	16,16	103,1	0,00	82,65	7,30	-3,00	0,00	0,00	86,95	
WEA 24	3.396	3.396	17,73	103,1	0,00	81,62	6,77	-3,00	0,00	0,00	85,39	

(Fortsetzung nächste Seite)...

Seite 39 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

Literalerter Annender: TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

Berechnet: 09.02.2022 16:11/3.5.576

DECIBEL - Detaillierte Ergebnisse

Berechnung: VBSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

...(Fortsetzung von vorheriger Seite)

WEA												
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
WEA 25	3.486	3.486	17,39	103,1	0,00	81,85	6,88	-3,00	0,00	0,00	85,73	
WEA 26	3.583	3.583	17,03	103,1	0,00	82,09	7,00	-3,00	0,00	0,00	86,09	
WEA 27	6.440	6.442	14,35	108,0	0,00	87,18	9,48	-3,00	0,00	0,00	93,66	
WEA 28	6.642	6.643	13,89	108,0	0,00	87,45	9,67	-3,00	0,00	0,00	94,12	
WEA 29	5.997	5.999	15,41	108,0	0,00	86,56	9,04	-3,00	0,00	0,00	92,60	
WEA 30	6.514	6.515	14,18	108,0	0,00	87,28	9,55	-3,00	0,00	0,00	93,83	
WEA 31	5.950	5.952	15,52	108,0	0,00	86,49	8,99	-3,00	0,00	0,00	92,48	
WEA 32	6.875	6.876	13,37	108,0	0,00	87,75	9,89	-3,00	0,00	0,00	94,64	
WEA 33	6.593	6.594	14,00	108,0	0,00	87,38	9,62	-3,00	0,00	0,00	94,01	
WEA 34	7.515	7.517	10,22	106,1	0,00	88,52	10,41	-3,00	0,00	0,00	95,93	
WEA 35	5.550	5.552	16,54	108,0	0,00	85,89	8,58	-3,00	0,00	0,00	91,46	
WEA 36	5.118	5.119	17,71	108,0	0,00	85,18	8,11	-3,00	0,00	0,00	90,29	
WEA 37	7.152	7.153	12,77	108,0	0,00	88,09	10,15	-3,00	0,00	0,00	95,24	
WEA 38	5.993	5.994	15,42	108,0	0,00	86,55	9,03	-3,00	0,00	0,00	92,59	
WEA 39	7.537	7.538	5,62	101,5	0,00	88,55	10,30	-3,00	0,00	0,00	95,84	
WEA 40	5.573	5.575	12,79	104,2	0,00	85,92	8,51	-3,00	0,00	0,00	91,44	
WEA 41	6.147	6.149	11,37	104,2	0,00	86,78	9,09	-3,00	0,00	0,00	92,86	
WEA 42	5.753	5.755	10,51	102,4	0,00	86,20	8,65	-3,00	0,00	0,00	91,85	
Summe			38,51									

Schall-Immissionsort: IP 13 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (13)

WEA											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 02	1.719	1.725	29,75	107,1	0,00	75,74	4,61	-3,00	0,00	0,00	77,34
WEA 03	1.883	1.890	26,06	104,1	0,00	76,53	4,52	-3,00	0,00	0,00	78,05
WEA 04	2.249	2.253	23,94	104,1	0,00	78,06	5,11	-3,00	0,00	0,00	80,17
WEA 05	2.249	2.254	23,94	104,1	0,00	78,06	5,11	-3,00	0,00	0,00	80,17
WEA 06	2.642	2.646	21,96	104,1	0,00	79,45	5,70	-3,00	0,00	0,00	82,15
WEA 07	2.499	2.504	25,17	107,1	0,00	78,97	5,95	-3,00	0,00	0,00	81,92
WEA 08	2.899	2.903	23,27	107,1	0,00	80,26	6,56		0,00	0,00	83,82
WEA 09	3.180	3.184	22,84	108,1	0,00	81,06		-3,00	0,00	0,00	85,29
WEA 10	2.747	2.751	24,56	106,6	0,00	79,79	5,23	-3,00	0,00	0,00	82,02
WEA 11	3.355	3.359	22,10	106,6	0,00	81,52	5,97	-3,00	0,00	0,00	84,49
WEA 12	2.916	2.920	23,83	106,6	0,00	80,31	5,45		0,00	0,00	82,75
WEA 13	3.268	3.272	22,42	106,6	0,00	81,29	5,87	-3,00	0,00	0,00	84,16
WEA 14	3.771	3.772	17,35	104,1	0,00	82,53	7,23		0,00	0,00	86,77
WEA 15	3.479	3.479	18,41	104,1	0,00	81,83		-3,00	0,00	0,00	85,70
WEA 16	3.269	3.269	19,22	104,1	0,00	81,29	6,60		0,00	0,00	84,89
WEA 20	3.589	3.590	23,10	108,5	0,00	82,10	6,27	-3,00	0,00	0,00	85,37
WEA 21	4.251	4.252	14,74	103,1	0,00	83,57	7,80		0,00	0,00	88,37
WEA 22	4.031	4.031	15,46	103,1	0,00	83,11	7,54		0,00	0,00	87,65
WEA 24	3.439	3.439	17,57	103,1	0,00	81,73	6,82		0,00	0,00	85,55
WEA 25	3.494	3.494	17,36	103,1	0,00	81,87		-3,00	0,00	0,00	85,76
WEA 26	3.559	3.559	17,12	103,1	0,00	82,03	6,97	-3,00	0,00	0,00	86,00
WEA 27	6.426	6.428	14,38	108,0	0,00	87,16	9,46		0,00	0,00	93,62
WEA 28	6.593	6.595	14,00	108,0	0,00	87,38	9,62	-3,00	0,00	0,00	94,01
WEA 29	5.971	5.973	15,47	108,0	0,00	86,52	9,01	-3,00	0,00	0,00	92,54
WEA 30	6.434	6.436	14,36	108,0	0,00	87,17	9,47		0,00	0,00	93,64
WEA 31	5.872	5.873	15,72	108,0	0,00	86,38	8,91	-3,00	0,00	0,00	92,29
WEA 32	6.774	6.776	13,59	108,0	0,00	87,62	9,80	-3,00	0,00	0,00	94,42
WEA 33	6.468	6.470	14,29	108,0	0,00	87,22	9,50		0,00	0,00	93,72
WEA 34	7.374	7.375	10,51	106,1	0,00	88,36	10,28	-3,00	0,00	0,00	95,64
WEA 35	5.437	5.439	16,84	108,0	0,00	85,71	8,46		0,00	0,00	91,16
WEA 36	5.009	5.011	18,02	108,0	0,00	85,00		-3,00	0,00	0,00	89,99
WEA 37	6.994	6.995	13,11	108,0	0,00	87,90	10,00	-3,00	0,00	0,00	94,90
WEA 38	5.846	5.847	15,78	108,0	0,00	86,34	8,88		0,00	0,00	92,22
WEA 39	7.362	7.364	5,97	101,5	0,00	88,34	10,15		0,00	0,00	95,49
WEA 40	5.414	5.415	13,21	104,2	0,00	85,67	8,35		0,00	0,00	91,02
WEA 41	5.952	5.954	11,84	104,2	0,00	86,50		-3,00	0,00	0,00	92,39
WEA 42	5.547	5.549	11,03	102,4	0,00	85,88	8,44	-3,00	0,00	0,00	91,33
Summe			36,70								

Seite 40 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

Libendierter Anwender:
TÜV NORD EnSys GmbH & Co. KG Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

09.02.2022 16:11/3.5.576

DECIBEL - Detaillierte Ergebnisse

Berechnung: VBSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s Schall-Immissionsort: IP 14 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (14)

Lautester Wert bis 95% Nennleistung **WEA**

WEA											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 02	1.568	1.575	30,82	107,1	0,00	74,95	4,32	-3,00	0,00	0,00	76,27
WEA 03	1.832	1.838	26,39	104,1	0,00	76,29	4,43	-3,00	0,00	0,00	77,72
WEA 04	2.236	2.241	24,01	104,1	0,00	78,01	5,09	-3,00	0,00	0,00	80,10
WEA 05	2.142	2.147	24,53	104,1	0,00	77,64	4,94	-3,00	0,00	0,00	79,58
WEA 06	2.534	2.538	22,47	104,1	0,00	79,09	5,55	-3,00	0,00	0,00	81,64
WEA 07	2.318	2.323	26,12	107,1	0,00	78,32	5,65	-3,00	0,00	0,00	80,97
WEA 08	2.715	2.719	24,12	107,1	0,00	79,69	6,28	-3,00	0,00	0,00	82,97
WEA 09	2.939	2.943	23,88	108,1	0,00	80,38	6,87	-3,00	0,00	0,00	84,25
WEA 10	2.494	2.498	25,73	106,6	0,00	78,95	4,91	-3,00	0,00	0,00	80,86
WEA 11	3.061	3.064	23,24	106,6	0,00	80,73	5,62	-3,00	0,00	0,00	83,35
WEA 12	2.605	2.610	25,20	106,6	0,00	79,33	5,05	-3,00	0,00	0,00	81,38
WEA 13	2.932	2.936	23,77	106,6	0,00	80,35	5,47	-3,00	0,00	0,00	82,82
WEA 14	3.992	3.992	16,59	104,1	0,00	83,02	7,50	-3,00	0,00	0,00	87,52
WEA 15	3.707	3.707	17,58	104,1	0,00	82,38	7,16	-3,00	0,00	0,00	86,54
WEA 16	3.503	3.503	18,32	104,1	0,00	81,89	6,90	-3,00	0,00	0,00	85,79
WEA 20	3.781	3.782	22,40	108,5	0,00	82,55	6,51	-3,00	0,00	0,00	86,07
WEA 21	3.943	3.943	15,76	103,1	0,00	82,92	7,44	-3,00	0,00	0,00	87,36
WEA 22	3.719	3.719	16,54	103,1	0,00	82,41	7,17	-3,00	0,00	0,00	86,58
WEA 24	3.040	3.040	19,16	103,1	0,00	80,66	6,30	-3,00	0,00	0,00	83,96
WEA 25	3.077	3.077	19,01	103,1	0,00	80,76	6,35	-3,00	0,00	0,00	84,11
WEA 26	3.124	3.125	18,81	103,1	0,00	80,90	6,41	-3,00	0,00	0,00	84,31
WEA 27	5.977	5.979	15,46	108,0	0,00	86,53	9,02	-3,00	0,00	0,00	92,55
WEA 28	6.130	6.132	15,08	108,0	0,00	86,75	9,17	-3,00	0,00	0,00	92,92
WEA 29	5.519	5.521	16,62	108,0	0,00	85,84	8,54	-3,00	0,00	0,00	91,38
WEA 30	5.960	5.962	15,50	108,0	0,00	86,51	9,00	-3,00	0,00	0,00	92,51
WEA 31	5.399	5.401	16,94	108,0	0,00	85,65	8,42	-3,00	0,00	0,00	91,06
WEA 32	6.292	6.293	14,70	108,0	0,00	86,98	9,33	-3,00	0,00	0,00	93,31
WEA 33	5.978	5.980	15,45	108,0	0,00	86,53	9,02	-3,00	0,00	0,00	92,55
WEA 34	6.878	6.879	11,56	106,1	0,00	87,75	9,84	-3,00	0,00	0,00	94,59
WEA 35	4.953	4.956	18,18	108,0	0,00	84,90	7,93	-3,00	0,00	0,00	89,83
WEA 36	4.530	4.532	19,44	108,0	0,00	84,13	7,44	-3,00	0,00	0,00	88,57
WEA 37	6.494	6.495	14,23	108,0	0,00	87,25	9,53	-3,00	0,00	0,00	93,78
WEA 38	5.351	5.353	17,07	108,0	0,00	85,57	8,36	-3,00	0,00	0,00	90,93
WEA 39	6.857	6.859	7,04	101,5	0,00	87,72	9,70	-3,00	0,00	0,00	94,43
WEA 40	4.916	4.918	14,58	104,2	0,00	84,84	7,81	-3,00	0,00	0,00	89,65
WEA 41	5.444	5.446	13,13	104,2	0,00	85,72	8,38	-3,00	0,00	0,00	91,10
WEA 42	5.037	5.039	12,41	102,4	0,00	85,05	7,91	-3,00	0,00	0,00	89,95
Summe			37,53								

Schall-Immissionsort: IP 15 Schall-Immissionsort: TA Lärm - Außenbereich (15)

Lautester Wert bis 95% Nennleistung

WEA												
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
WEA 02	1.013	1.025	35,72	107,1	0,00	71,21	3,16	-3,00	0,00	0,00	71,37	
WEA 03	1.282	1.291	30,45	104,1	0,00	73,22	3,44	-3,00	0,00	0,00	73,66	
WEA 04	1.691	1.697	27,32	104,1	0,00	75,59	4,19	-3,00	0,00	0,00	76,79	
WEA 05	1.586	1.593	28,06	104,1	0,00	75,04	4,01	-3,00	0,00	0,00	76,05	
WEA 06	1.978	1.984	25,48	104,1	0,00	76,95	4,68	-3,00	0,00	0,00	78,63	
WEA 07	1.773	1.779	29,38	107,1	0,00	76,00	4,71	-3,00	0,00	0,00	77,71	
WEA 08	2.172	2.176	26,92	107,1	0,00	77,76	5,41	-3,00	0,00	0,00	80,17	
WEA 09	2.417	2.422	26,39	108,1	0,00	78,68	6,05	-3,00	0,00	0,00	81,74	
WEA 10	1.976	1.982	28,46	106,6	0,00	76,94	4,18	-3,00	0,00	0,00	78,12	
WEA 11	2.570	2.574	25,37	106,6	0,00	79,21	5,01	-3,00	0,00	0,00	81,22	
WEA 12	2.125	2.130	27,62	106,6	0,00	77,57	4,40	-3,00	0,00	0,00	78,97	
WEA 13	2.473	2.477	25,83	106,6	0,00	78,88	4,88	-3,00	0,00	0,00	80,76	
WEA 14	3.536	3.536	18,20	104,1	0,00	81,97	6,94	-3,00	0,00	0,00	85,91	
WEA 15	3.258	3.259	19,27	104,1	0,00	81,26	6,59	-3,00	0,00	0,00	84,85	
WEA 16	3.061	3.061	20,07	104,1	0,00	80,72	6,33	-3,00	0,00	0,00	84,04	
WEA 20	3.308	3.309	24,18	108,5	0,00	81,39	5,89	-3,00	0,00	0,00	84,29	
WEA 21	3.463	3.463	17,47	103,1	0,00	81,79	6,85	-3,00	0,00	0,00	85,64	
WEA 22	3.241	3.241	18,34	103,1	0,00	81,21	6,56	-3,00	0,00	0,00	84,78	
WEA 24	2.648	2.648	20,90	103,1	0,00	79,46	5,75	-3,00	0,00	0,00	82,21	

(Fortsetzung nächste Seite)...

Seite 41 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

Literaterter Annender: TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

Berechnet: 09.02.2022 16:11/3.5.576

DECIBEL - Detaillierte Ergebnisse

Berechnung: VBSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

...(Fortsetzung von vorheriger Seite)

WEA											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 25	2.710	2.710	20,62	103,1	0,00	79,66	5,84	-3,00	0,00	0,00	82,50
WEA 26	2.783	2.783	20,28	103,1	0,00	79,89	5,94	-3,00	0,00	0,00	82,84
WEA 27	5.654	5.656	16,27	108,0	0,00	86,05	8,68	-3,00	0,00	0,00	91,73
WEA 28	5.833	5.834	15,82	108,0	0,00	86,32	8,87	-3,00	0,00	0,00	92,19
WEA 29	5.202	5.204	17,48	108,0	0,00	85,33	8,20	-3,00	0,00	0,00	90,53
WEA 30	5.686	5.687	16,19	108,0	0,00	86,10	8,72	-3,00	0,00	0,00	91,82
WEA 31	5.122	5.124	17,70	108,0	0,00	85,19	8,11	-3,00	0,00	0,00	90,30
WEA 32	6.035	6.037	15,31	108,0	0,00	86,62	9,08	-3,00	0,00	0,00	92,69
WEA 33	5.740	5.742	16,05	108,0	0,00	86,18	8,77	-3,00	0,00	0,00	91,96
WEA 34	6.656	6.657	12,05	106,1	0,00	87,47	9,63	-3,00	0,00	0,00	94,09
WEA 35	4.702	4.704	18,92	108,0	0,00	84,45	7,64	-3,00	0,00	0,00	89,09
WEA 36	4.271	4.273	20,26	108,0	0,00	83,62	7,13	-3,00	0,00	0,00	87,75
WEA 37	6.285	6.286	14,71	108,0	0,00	86,97	9,32	-3,00	0,00	0,00	93,29
WEA 38	5.129	5.131	17,68	108,0	0,00	85,20	8,12	-3,00	0,00	0,00	90,32
WEA 39	6.663	6.665	7,46	101,5	0,00	87,48	9,53	-3,00	0,00	0,00	94,00
WEA 40	4.703	4.705	15,21	104,2	0,00	84,45	7,57	-3,00	0,00	0,00	89,03
WEA 41	5.264	5.266	13,61	104,2	0,00	85,43	8,19	-3,00	0,00	0,00	90,62
WEA 42	4.866	4.868	12,89	102,4	0,00	84,75	7,72	-3,00	0,00	0,00	89,47
Summe			40,74								

Schall-Immissionsort: IP 16 Schall-Immissionsort: TA Lärm - Außenbereich (16)

WEA											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 02	1.286	1.295	33,10	107,1	0,00	73,24	3,75	-3,00	0,00	0,00	73,99
WEA 03	1.658	1.665	27,55	104,1	0,00	75,43	4,13	-3,00	0,00	0,00	76,56
WEA 04	1.970	1.975	25,53	104,1	0,00	76,91	4,67	-3,00	0,00	0,00	78,58
WEA 05	1.603	1.610	27,94	104,1	0,00	75,14	4,04	-3,00	0,00	0,00	76,17
WEA 06	1.824	1.830	26,44	104,1	0,00	76,25	4,42	-3,00	0,00	0,00	77,67
WEA 07	1.427	1.435	31,91	107,1	0,00	74,13	4,04	-3,00	0,00	0,00	75,18
WEA 08	1.670	1.677	30,09	107,1	0,00	75,49	4,52	-3,00	0,00	0,00	77,00
WEA 09	1.639	1.646	31,15	108,1	0,00	75,33	4,65	-3,00	0,00	0,00	76,98
WEA 10	1.262	1.270	33,47	106,6	0,00	73,08	3,03	-3,00	0,00	0,00	73,11
WEA 11	1.563	1.570	31,13	106,6	0,00	74,92	3,54	-3,00	0,00	0,00	75,46
WEA 12	1.128	1.138	34,67	106,6	0,00	72,12	2,79	-3,00	0,00	0,00	71,91
WEA 13	1.322	1.331	32,97	106,6	0,00	73,48	3,14	-3,00	0,00	0,00	73,62
WEA 14	4.082	4.082	16,29	104,1	0,00	83,22	7,60	-3,00	0,00	0,00	87,82
WEA 15	3.860	3.860	17,04	104,1	0,00	82,73	7,34	-3,00	0,00	0,00	87,07
WEA 16	3.706	3.706	17,58	104,1		82,38	7,15	-3,00	0,00	0,00	86,53
WEA 20	3.800	3.801	22,33	108,5	0,00	82,60	6,54	-3,00	0,00	0,00	86,13
WEA 21	2.337	2.337	22,45	103,1	0,00	78,37	5,29	-3,00	0,00	0,00	80,67
WEA 22	2.115	2.115	23,66	103,1	0,00	77,51	4,95	-3,00	0,00	0,00	79,46
WEA 24	1.282	1.282	29,44	103,1	0,00	73,16	3,51	-3,00	0,00	0,00	73,67
WEA 25	1.298	1.298	29,30	103,1	0,00	73,27	3,54	-3,00	0,00	0,00	73,81
WEA 26	1.340	1.341	28,95	103,1	0,00	73,55	3,62	-3,00	0,00	0,00	74,17
WEA 27	4.201	4.203	20,49	108,0	0,00	83,47	7,05	-3,00	0,00	0,00	87,52
WEA 28	4.369	4.371	19,94	108,0	0,00	83,81	7,25	-3,00	0,00	0,00	88,06
WEA 29	3.745	3.748	22,05	108,0	0,00	82,48	6,48	-3,00	0,00	0,00	85,96
WEA 30	4.218	4.220	20,43	108,0		83,51	7,07	-3,00	0,00	0,00	87,58
WEA 31	3.654	3.656	22,38	108,0		82,26	6,37	-3,00	0,00	0,00	85,63
WEA 32	4.567	4.570	19,32	108,0	0,00	84,20	7,49	-3,00	0,00	0,00	88,68
WEA 33	4.275	4.278	20,24	108,0	0,00	83,62	7,14	-3,00	0,00	0,00	87,76
WEA 34	5.194	5.196	15,69	106,1	0,00	85,31	8,15	-3,00	0,00	0,00	90,46
WEA 35	3.235	3.238	23,99	108,0	0,00	81,21	5,81	-3,00	0,00	0,00	84,02
WEA 36	2.803	2.807	25,83	108,0	0,00	79,97	5,21	-3,00	0,00	0,00	82,18
WEA 37	4.828	4.830	18,54	108,0	0,00	84,68	7,79	-3,00	0,00	0,00	89,46
WEA 38 WEA 39	3.670	3.672	22,32	108,0	0,00	82,30	6,39	-3,00	0,00	0,00	85,68
	5.213	5.215 3.252	11,02	101,5	0,00	85,34	8,10	-3,00	0,00	0,00	90,44
WEA 40 WEA 41	3.249	3.252	20,19 18,03	104,2	0,00	81,24	5,80	-3,00 -3,00	0,00	0,00	84,04
WEA 41	3.438	3.830				82,66	6,54				86,20
	3.438	3.441	17,60	102,4	0,00	81,73	6,02	-3,00	0,00	0,00	84,76
Summe			43,34								

Seite 42 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

Lizenzierter Anwender: **TÜV NORD EnSys GmbH & Co. KG -**Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

09.02.2022 16:11/3.5.576

DECIBEL - Detaillierte Ergebnisse

Berechnung: VBSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s Schall-Immissionsort: IP 17 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (17)

Lautester Wert bis 95% Nennleistung WEA

WEA											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 02	3.033	3.037	22,69	107,1	0,00	80,65	6,75	-3,00	0,00	0,00	84,40
WEA 03	3.379	3.383	18,81	104,1	0,00	81,59	6,72	-3,00	0,00	0,00	85,30
WEA 04	3.629	3.632	17,87	104,1	0,00	82,20	7,03	-3,00	0,00	0,00	86,24
WEA 05	3.232	3.236	19,39	104,1	0,00	81,20	6,52	-3,00	0,00	0,00	84,72
WEA 06	3.330	3.333	19,00	104,1	0,00	81,46	6,65	-3,00	0,00	0,00	85,11
WEA 07	2.938	2.942	23,10	107,1	0,00	80,37	6,62	-3,00	0,00	0,00	83,99
WEA 08	3.002	3.006	22,82	107,1	0,00	80,56	6,71	-3,00	0,00	0,00	84,27
WEA 09	2.739	2.742	24,80	108,1	0,00	79,76	6,57	-3,00	0,00	0,00	83,33
WEA 10	2.590	2.594	25,27	106,6	0,00	79,28	5,03	-3,00	0,00	0,00	81,31
WEA 11	2.420	2.425	26,08	106,6	0,00	78,69	4,81	-3,00	0,00	0,00	80,50
WEA 12	2.252	2.257	26,94	106,6	0,00	78,07	4,58	-3,00	0,00	0,00	79,65
WEA 13	2.098	2.103	27,77	106,6	0,00	77,46	4,36	-3,00	0,00	0,00	78,82
WEA 14	5.690	5.690	11,70	104,1	0,00	86,10	9,31	-3,00	0,00	0,00	92,41
WEA 15	5.499	5.500	12,18	104,1	0,00	85,81	9,13	-3,00	0,00	0,00	91,93
WEA 16	5.367	5.367	12,53	104,1	0,00	85,59	8,99	-3,00	0,00	0,00	91,59
WEA 20	5.397	5.398	17,42	108,5	0,00	85,64	8,40	-3,00	0,00	0,00	91,05
WEA 21	2.655	2.655	20,87	103,1	0,00	79,48	5,76	-3,00	0,00	0,00	82,24
WEA 22	2.517	2.517	21,53	103,1	0,00	79,02	5,56	-3,00	0,00	0,00	81,58
WEA 24	1.589	1.590	27,01	103,1	0,00	75,03	4,08	-3,00	0,00	0,00	76,10
WEA 25	1.411	1.412	28,36	103,1	0,00	74,00	3,76	-3,00	0,00	0,00	74,75
WEA 26	1.236	1.237	29,84	103,1	0,00	72,85	3,42	-3,00	0,00	0,00	73,27
WEA 27	3.026	3.030	24,85	108,0	0,00	80,63	5,53	-3,00	0,00	0,00	83,15
WEA 28	3.069	3.072	24,67	108,0	0,00	80,75	5,59	-3,00	0,00	0,00	83,34
WEA 29	2.576	2.580	26,89	108,0	0,00	79,23	4,88	-3,00	0,00	0,00	81,12
WEA 30	2.834	2.837	25,69	108,0	0,00	80,06	5,26	-3,00	0,00	0,00	82,31
WEA 31	2.311	2.316	28,22	108,0	0,00	78,29	4,49	-3,00	0,00	0,00	79,78
WEA 32	3.109	3.113	24,50	108,0	0,00	80,86	5,64	-3,00	0,00	0,00	83,50
WEA 33	2.765	2.768	26,00	108,0	0,00	79,84	5,16	-3,00	0,00	0,00	82,00
WEA 34	3.628	3.631	20,65	106,1	0,00	82,20	6,30	-3,00	0,00	0,00	85,50
WEA 35	1.812	1.817	31,11	108,0	0,00	76,19	3,70	-3,00	0,00	0,00	76,89
WEA 36	1.450	1.457	33,64	108,0	0,00	74,27	3,10	-3,00	0,00	0,00	74,37
WEA 37	3.233	3.236	24,00	108,0	0,00	81,20	5,81	-3,00	0,00	0,00	84,01
WEA 38	2.122	2.127	29,25	108,0	0,00	77,55	4,20	-3,00	0,00	0,00	78,75
WEA 39	3.583	3.586	16,16	101,5	0,00	82,09	6,21	-3,00	0,00	0,00	85,30
WEA 40	1.683	1.689	28,20	104,2	0,00	75,55	3,48	-3,00	0,00	0,00	76,04
WEA 41	2.167	2.172	25,24	104,2	0,00	77,74	4,25	-3,00	0,00	0,00	78,99
WEA 42	1.758	1.764	25,82	102,4	0,00	75,93	3,61	-3,00	0,00	0,00	76,54
Summe			41,64								

Schall-Immissionsort: IP 18 Schall-Immissionsort: TA Lärm - Außenbereich (18)

Lautester Wert bis 95% Nennleistung

(Fortsetzung nächste Seite)...

WEA												
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
WEA 02	2.706	2.710	24,16	107,1	0,00	79,66	6,27	-3,00	0,00	0,00	82,93	
WEA 03	2.816	2.820	21,15	104,1	0,00	80,01	5,95	-3,00	0,00	0,00	82,96	
WEA 04	2.787	2.791	21,28	104,1	0,00	79,91	5,91	-3,00	0,00	0,00	82,83	
WEA 05	2.450	2.455	22,89	104,1	0,00	78,80	5,42	-3,00	0,00	0,00	81,22	
WEA 06	2.252	2.257	23,92	104,1	0,00	78,07	5,12	-3,00	0,00	0,00	80,19	
WEA 07	2.056	2.061	27,59	107,1	0,00	77,28	5,21	-3,00	0,00	0,00	79,50	
WEA 08	1.790	1.796	29,26	107,1	0,00	76,09	4,74	-3,00	0,00	0,00	77,83	
WEA 09	1.366	1.374	33,27	108,1	0,00	73,76	4,09	-3,00	0,00	0,00	74,85	
WEA 10	1.653	1.660	30,49	106,6	0,00	75,40	3,69	-3,00	0,00	0,00	76,09	
WEA 11	1.015	1.026	35,78	106,6	0,00	71,22	2,58	-3,00	0,00	0,00	70,80	
WEA 12	1.379	1.387	32,51	106,6	0,00	73,84	3,24	-3,00	0,00	0,00	74,08	
WEA 13	1.008	1.020	35,85	106,6	0,00	71,17	2,57	-3,00	0,00	0,00	70,74	
WEA 14	4.350	4.350	15,43	104,1	0,00	83,77	7,91	-3,00	0,00	0,00	88,68	
WEA 15	4.260	4.260	15,72	104,1	0,00	83,59	7,81	-3,00	0,00	0,00	88,40	
WEA 16	4.204	4.205	15,89	104,1	0,00	83,47	7,75	-3,00	0,00	0,00	88,22	
WEA 20	4.061	4.062	21,43	108,5	0,00	83,17	6,86	-3,00	0,00	0,00	87,04	
WEA 21	415	417	41,17	103,1	0,00	63,40	1,55	-3,00	0,00	0,00	61,95	
WEA 22	432	434	40,76	103,1	0,00	63,76	1,60	-3,00	0,00	0,00	62,36	
WEA 24	980	981	32,37	103,1	0,00	70,83	2,91	-3,00	0,00	0,00	70,74	

25.03.2022 16:57 / 12 windPRO

Seite 43 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Doniald

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

Literalerter Annender: TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

Berechnet: 09.02.2022 16:11/3.5.576

DECIBEL - Detaillierte Ergebnisse

Berechnung: VBSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

...(Fortsetzung von vorheriger Seite)

WEA												
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
WEA 25	1.057	1.058	31,55	103,1	0,00	71,49	3,07	-3,00	0,00	0,00	71,56	
WEA 26	1.159	1.160	30,55	103,1	0,00	72,29	3,27	-3,00	0,00	0,00	72,56	
WEA 27	2.553	2.557	27,00	108,0	0,00	79,15	4,85	-3,00	0,00	0,00	81,00	
WEA 28	2.852	2.856	25,61	108,0	0,00	80,12	5,28	-3,00	0,00	0,00	82,40	
WEA 29	2.193	2.198	28,86	108,0	0,00	77,84	4,31	-3,00	0,00	0,00	79,15	
WEA 30	2.855	2.858	25,60	108,0	0,00	80,12	5,29	-3,00	0,00	0,00	82,41	
WEA 31	2.370	2.374	27,92	108,0	0,00	78,51	4,58	-3,00	0,00	0,00	80,09	
WEA 32	3.260	3.263	23,89	108,0	0,00	81,27	5,85	-3,00	0,00	0,00	84,12	
WEA 33	3.117	3.121	24,47	108,0	0,00	80,89	5,65	-3,00	0,00	0,00	83,54	
WEA 34	4.003	4.006	19,32	106,1	0,00	83,05	6,77	-3,00	0,00	0,00	86,83	
WEA 35	2.231	2.236	28,65	108,0	0,00	77,99	4,37	-3,00	0,00	0,00	79,36	
WEA 36	1.915	1.920	30,47	108,0	0,00	76,67	3,87	-3,00	0,00	0,00	77,54	
WEA 37	3.751	3.754	22,03	108,0	0,00	82,49	6,49	-3,00	0,00	0,00	85,98	
WEA 38	2.733	2.737	26,15	108,0	0,00	79,75	5,11	-3,00	0,00	0,00	81,86	
WEA 39	4.168	4.171	14,13	101,5	0,00	83,40	6,93	-3,00	0,00	0,00	87,33	
WEA 40	2.495	2.499	23,53	104,2	0,00	78,96	4,74	-3,00	0,00	0,00	80,70	
WEA 41	3.109	3.113	20,76	104,2	0,00	80,86	5,61	-3,00	0,00	0,00	83,47	
WEA 42	2.884	2.887	19,87	102,4	0,00	80,21	5,29	-3,00	0,00	0,00	82,50	
Summe			47,05									

Schall-Immissionsort: IP 19 Schall-Immissionsort: TA Lärm - Außenbereich (19)

WEA											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 02	3.287	3.291	21,63	107,1	0,00	81,35	7,11	-3,00	0,00	0,00	85,46
WEA 03	3.253	3.257	19,30	104,1	0,00	81,26	6,55	-3,00	0,00	0,00	84,81
WEA 04	3.069	3.073	20,05	104,1	0,00	80,75	6,30	-3,00	0,00	0,00	84,05
WEA 05	2.851	2.855	20,99	104,1	0,00	80,11	6,00	-3,00	0,00	0,00	83,12
WEA 06	2.520	2.525	22,54	104,1	0,00	79,05	5,53	-3,00	0,00	0,00	81,57
WEA 07	2.517	2.522	25,08	107,1	0,00	79,03	5,98	-3,00	0,00	0,00	82,01
WEA 08	2.134	2.140	27,14	107,1	0,00	77,61	5,35	-3,00	0,00	0,00	79,95
WEA 09	1.808	1.815	29,97	108,1	0,00	76,18	4,98	-3,00	0,00	0,00	78,15
WEA 10	2.243	2.248	26,98	106,6	0,00	78,04	4,56	-3,00	0,00	0,00	79,60
WEA 11	1.680	1.687	30,31	106,6	0,00	75,54	3,73	-3,00	0,00	0,00	76,28
WEA 12	2.142	2.148	27,52	106,6	0,00	77,64	4,42	-3,00	0,00	0,00	79,07
WEA 13	1.886	1.893	28,99	106,6	0,00	76,54	4,05	-3,00	0,00	0,00	77,59
WEA 14	4.056	4.057	16,38	104,1	0,00	83,16	7,57	-3,00	0,00	0,00	87,74
WEA 15	4.048	4.049	16,40	104,1	0,00	83,15	7,57	-3,00	0,00	0,00	87,71
WEA 16	4.053	4.054	16,39	104,1	0,00	83,16	7,57	-3,00	0,00	0,00	87,73
WEA 20	3.799	3.800	22,34	108,5	0,00	82,60	6,53	-3,00	0,00	0,00	86,13
WEA 21	905	906	33,22	103,1	0,00	70,15	2,75	-3,00	0,00	0,00	69,89
WEA 22	1.109	1.110	31,03	103,1	0,00	71,91	3,17	-3,00	0,00	0,00	72,09
WEA 24	2.104	2.104	23,72	103,1	0,00	77,46	4,93	-3,00	0,00	0,00	79,40
WEA 25	2.222	2.223	23,06	103,1	0,00	77,94	5,12	-3,00	0,00	0,00	80,06
WEA 26	2.348	2.349	22,39	103,1	0,00	78,42	5,31	-3,00	0,00	0,00	80,73
WEA 27	3.024	3.028	24,86	108,0	0,00	80,62	5,52	-3,00	0,00	0,00	83,15
WEA 28	3.385	3.388	23,39	108,0	0,00	81,60	6,01	-3,00	0,00	0,00	84,61
WEA 29	2.811	2.816	25,79	108,0	0,00	79,99	5,23	-3,00	0,00	0,00	82,22
WEA 30	3.495	3.498	22,97	108,0	0,00	81,88	6,16	-3,00	0,00	0,00	85,04
WEA 31	3.132	3.136	24,41	108,0	0,00	80,93	5,67	-3,00	0,00	0,00	83,60
WEA 32	3.886	3.889	21,55	108,0	0,00	82,80	6,66	-3,00	0,00	0,00	86,46
WEA 33	3.848	3.851	21,68	108,0	0,00	82,71	6,61	-3,00	0,00	0,00	86,32
WEA 34	4.630	4.633	17,31	106,1	0,00	84,32	7,52	-3,00	0,00	0,00	88,84
WEA 35	3.156	3.160	24,31	108,0	0,00	80,99	5,71	-3,00	0,00	0,00	83,70
WEA 36	2.935	2.939	25,24	108,0	0,00	80,36	5,40	-3,00	0,00	0,00	82,77
WEA 37	4.464	4.466	19,64	108,0	0,00	84,00	7,36	-3,00	0,00	0,00	88,36
WEA 38	3.617	3.620	22,51	108,0	0,00	82,17	6,32	-3,00	0,00	0,00	85,49
WEA 39	4.865	4.868	11,99	101,5	0,00	84,75	7,72	-3,00	0,00	0,00	89,47
WEA 40	3.478	3.481	19,30	104,2	0,00	81,83	6,10	-3,00	0,00	0,00	84,93
WEA 41	4.040	4.043	17,30	104,2	0,00	83,13	6,80	-3,00	0,00	0,00	86,93
WEA 42	3.891	3.894	15,96	102,4	0,00	82,81	6,59	-3,00	0,00	0,00	86,40
Summe			40,96								

Seite 44 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Doniald

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

Utarvitetre Anvender: TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

Berechnet: 09.02.2022 16:11/3.5.576

DECIBEL - Detaillierte Ergebnisse

Berechnung: VBSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s Schall-Immissionsort: IP 20 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (20)

Lautester Wert bis 95% Nennleistung WEA

WEA											
Nr.	Abstand		Berechnet		Dc	Adiv	Aatm	Agr		Amisc	A
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 02	4.618	4.621	17,03	107,1	0,00	84,29	8,77	-3,00	0,00	0,00	90,06
WEA 03	4.611	4.614	14,65	104,1	0,00	84,28	8,18	-3,00	0,00	0,00	89,46
WEA 04	4.439	4.441	15,17	104,1	0,00	83,95	7,99	-3,00	0,00	0,00	88,94
WEA 05	4.210	4.212	15,89	104,1	0,00	83,49	7,73	-3,00	0,00	0,00	88,22
WEA 06	3.889	3.891	16,96	104,1	0,00	82,80	7,35	-3,00	0,00	0,00	87,15
WEA 07	3.862	3.864	19,48	107,1	0,00	82,74	7,87	-3,00	0,00	0,00	87,61
WEA 08	3.490	3.493	20,84	107,1	0,00	81,86	7,38	-3,00	0,00	0,00	86,25
WEA 09	3.136	3.140	23,03	108,1	0,00	80,94	7,16	-3,00	0,00	0,00	85,10
WEA 10	3.552	3.555	21,38	106,6	0,00	82,02	6,19	-3,00	0,00	0,00	85,20
WEA 11	2.940	2.943	23,73	106,6	0,00	80,38	5,47	-3,00	0,00	0,00	82,85
WEA 12	3.390	3.393	21,97	106,6	0,00	81,61	6,01	-3,00	0,00	0,00	84,62
WEA 13	3.071	3.075	23,19	106,6	0,00	80,76	5,63	-3,00	0,00	0,00	83,39
WEA 14	5.307	5.308	12,68	104,1	0,00	85,50	8,93	-3,00	0,00	0,00	91,43
WEA 15	5.333	5.333	12,62	104,1	0,00	85,54	8,96	-3,00	0,00	0,00	91,50
WEA 16	5.358	5.359	12,55	104,1	0,00	85,58	8,99	-3,00	0,00	0,00	91,57
WEA 20	5.069	5.070	18,32	108,5	0,00	85,10	8,04	-3,00	0,00	0,00	90,14
WEA 21	2.052	2.052	24,02	103,1	0,00	77,24	4,85	-3,00	0,00	0,00	79,09
WEA 22	2.276	2.277	22,77	103,1	0,00	78,15	5,20	-3,00	0,00	0,00	80,35
WEA 24	3.118	3.118	18,84	103,1	0,00	80,88	6,40	-3,00	0,00	0,00	84,28
WEA 25	3.177	3.177	18,60	103,1	0,00	81,04	6,48	-3,00	0,00	0,00	84,52
WEA 26	3.244	3.244	18,32	103,1	0,00	81,22	6,57	-3,00	0,00	0,00	84,79
WEA 27	2.526	2.530	27,14	108,0	0,00	79,06	4,81	-3,00	0,00	0,00	80,87
WEA 28	2.894	2.898	25,42	108,0	0,00	80,24	5,34	-3,00	0,00	0,00	82,58
WEA 29	2.531	2.535	27,11	108,0	0,00	79,08	4,82	-3,00	0,00	0,00	80,90
WEA 30	3.117	3.120	24,47	108,0	0,00	80,88	5,65	-3,00	0,00	0,00	83,53
WEA 31	2.966	2.969	25,11	108,0	0,00	80,45	5,44	-3,00	0,00	0,00	82,90
WEA 32	3.440	3.443	23,18	108,0	0,00	81,74	6,09	-3,00	0,00	0,00	84,82
WEA 33	3.537	3.540	22,81	108,0	0,00	81,98	6,21	-3,00	0,00	0,00	85,19
WEA 34	4.116	4.119	18,94	106,1	0,00	83,29	6,91	-3,00	0,00	0,00	87,21
WEA 35	3.205	3.208	24,11	108,0	0,00	81,13	5,77	-3,00	0,00	0,00	83,90
WEA 36	3.165	3.168	24,27	108,0	0,00	81,02	5,72	-3,00	0,00	0,00	83,73
WEA 37	4.069	4.071	20,92	108,0	0,00	83,19	6,89	-3,00	0,00	0,00	87,08
WEA 38	3.543	3.545	22,79	108,0	0,00	81,99	6,22	-3,00	0,00	0,00	85,21
WEA 39	4.420	4.422	13,33	101,5	0,00	83,91	7,22	-3,00	0,00	0,00	88,13
WEA 40	3.572	3.575	18,95	104,2	0,00	82,07	6,22	-3,00	0,00	0,00	85,28
WEA 41	3.990	3.993	17,47	104,2	0,00	83,03	6,74	-3,00	0,00	0,00	86,76
WEA 42	3.980	3.983	15,66	102,4	0,00	83,00	6,70	-3,00	0,00	0,00	86,71
Summe			37,50								

Schall-Immissionsort: IP 21 Schall-Immissionsort: TA Lärm - Reines Wohngebiet / Kurgebiet (21)

Lautester Wert bis 95% Nennleistung WEA

WEA												
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
WEA 02	4.990	4.992	15,95	107,1	0,00	84,97	9,17	-3,00	0,00	0,00	91,14	
WEA 03	5.339	5.341	12,62	104,1	0,00	85,55	8,94	-3,00	0,00	0,00	91,49	
WEA 04	5.585	5.587	11,98	104,1	0,00	85,94	9,18	-3,00	0,00	0,00	92,13	
WEA 05	5.186	5.188	13,02	104,1	0,00	85,30	8,79	-3,00	0,00	0,00	91,09	
WEA 06	5.262	5.264	12,82	104,1	0,00	85,43	8,86	-3,00	0,00	0,00	91,29	
WEA 07	4.878	4.880	16,27	107,1	0,00	84,77	9,05	-3,00	0,00	0,00	90,82	
WEA 08	4.902	4.904	16,20	107,1	0,00	84,81	9,08	-3,00	0,00	0,00	90,89	
WEA 09	4.591	4.593	17,85	108,1	0,00	84,24	9,03	-3,00	0,00	0,00	90,27	
WEA 10	4.508	4.510	18,33	106,6	0,00	84,08	7,17	-3,00	0,00	0,00	88,26	
WEA 11	4.232	4.234	19,15	106,6	0,00	83,54	6,90	-3,00	0,00	0,00	87,44	
WEA 12	4.152	4.154	19,39	106,6	0,00	83,37	6,82	-3,00	0,00	0,00	87,19	
WEA 13	3.931	3.934	20,10	106,6	0,00	82,90	6,60	-3,00	0,00	0,00	86,49	
WEA 14	7.625	7.626	7,46	104,1	0,00	88,65	11,01	-3,00	0,00	0,00	96,65	
WEA 15	7.445	7.445	7,82	104,1	0,00	88,44	10,86	-3,00	0,00	0,00	96,30	
WEA 16	7.318	7.318	8,07	104,1	0,00	88,29	10,76	-3,00	0,00	0,00	96,05	
WEA 20	7.330	7.331	12,86	108,5	0,00	88,30	10,31	-3,00	0,00	0,00	95,61	
WEA 21	4.196	4.196	14,92	103,1	0,00	83,46	7,74	-3,00	0,00	0,00	88,19	
WEA 22	4.129	4.129	15,14	103,1	0,00	83,32	7,66		0,00	0,00	87,98	
WEA 24	3.392	3.392	17,75	103,1	0,00	81,61	6,76	-3,00	0,00	0,00	85,37	

(Fortsetzung nächste Seite)...

Seite 45 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Prolekt

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

Literalerter Annender: TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

Berechnet: 09.02.2022 16:11/3.5.576

DECIBEL - Detaillierte Ergebnisse

Berechnung: VBSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

...(Fortsetzung von vorheriger Seite)

WEA												
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
WEA 25	3.206	3.206	18,48	103,1	0,00	81,12	6,52	-3,00	0,00	0,00	84,64	
WEA 26	3.021	3.022	19,24	103,1	0,00	80,60	6,27	-3,00	0,00	0,00	83,88	
WEA 27	2.989	2.992	25,01	108,0	0,00	80,52	5,47	-3,00	0,00	0,00	82,99	
WEA 28	2.791	2.795	25,89	108,0	0,00	79,93	5,20	-3,00	0,00	0,00	82,12	
WEA 29	2.716	2.720	26,23	108,0	0,00	79,69	5,09	-3,00	0,00	0,00	81,78	
WEA 30	2.466	2.470	27,43	108,0	0,00	78,85	4,72	-3,00	0,00	0,00	80,58	
WEA 31	2.263	2.268	28,48	108,0	0,00	78,11	4,42	-3,00	0,00	0,00	79,53	
WEA 32	2.480	2.484	27,36	108,0	0,00	78,90	4,74	-3,00	0,00	0,00	80,64	
WEA 33	2.121	2.125	29,26	108,0	0,00	77,55	4,20	-3,00	0,00	0,00	78,74	
WEA 34	2.589	2.593	24,99	106,1	0,00	79,27	4,88	-3,00	0,00	0,00	81,16	
WEA 35	1.911	1.917	30,49	108,0	0,00	76,65	3,86	-3,00	0,00	0,00	77,52	
WEA 36	1.981	1.986	30,07	108,0	0,00	76,96	3,97	-3,00	0,00	0,00	77,93	
WEA 37	2.196	2.200	28,84	108,0	0,00	77,85	4,31	-3,00	0,00	0,00	79,16	
WEA 38	1.698	1.704	31,86	108,0	0,00	75,63	3,52	-3,00	0,00	0,00	76,15	
WEA 39	2.364	2.368	21,43	101,5	0,00	78,49	4,54	-3,00	0,00	0,00	80,03	
WEA 40	1.543	1.549	29,18	104,2	0,00	74,80	3,25	-3,00	0,00	0,00	75,05	
WEA 41	1.325	1.333	30,86	104,2	0,00	73,50	2,88	-3,00	0,00	0,00	73,37	
WEA 42	1.155	1.164	30,47	102,4	0,00	72,32	2,58	-3,00	0,00	0,00	71,89	
Summe			41,05									

Schall-Immissionsort: IP 22 Schall-Immissionsort: TA Lärm - Außenbereich (22)

Nr.	Abstand	Schallweg	Berechnet		Dc	Adiv	Aatm	Agr		Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 02	1.262	1.271	33,31	107,1	0,00	73,08	3,70	-3,00	0,00	0,00	73,78
WEA 03	1.624	1.631	27,78	104,1	0,00	75,25	4,07	-3,00	0,00	0,00	76,33
WEA 04	1.922	1.927	25,82	104,1	0,00	76,70	4,59	-3,00	0,00	0,00	78,28
WEA 05	1.547	1.554	28,34	104,1	0,00	74,83	3,94	-3,00	0,00	0,00	75,77
WEA 06	1.753	1.759	26,90	104,1	0,00	75,91	4,30	-3,00	0,00	0,00	77,21
WEA 07	1.354	1.361	32,52	107,1	0,00	73,68	3,89	-3,00	0,00	0,00	74,57
WEA 08	1.584	1.591	30,71	107,1	0,00	75,03	4,35	-3,00	0,00	0,00	76,38
WEA 09	1.543	1.550	31,86	108,1		74,81	4,46	-3,00	0,00	0,00	76,27
WEA 10	1.172	1.181	34,27	106,6		72,44		-3,00	0,00	0,00	72,32
WEA 11	1.463	1.471	31,86	106,6		74,35	3,38	-3,00	0,00	0,00	74,73
WEA 12	1.029	1.040	35,64	106,6		71,34	2,61	-3,00	0,00	0,00	70,95
WEA 13	1.224	1.233	33,80	106,6		72,82	2,97	-3,00	0,00	0,00	72,78
WEA 14	4.030	4.030	16,46	104,1	0,00	83,11	7,54	-3,00	0,00	0,00	87,65
WEA 15	3.813	3.813	17,20	104,1		82,63	7,28	-3,00	0,00	0,00	86,91
WEA 16	3.662	3.662	17,74	104,1		82,28	7,10	-3,00	0,00	0,00	86,38
WEA 20	3.746	3.747	22,52	108,5		82,47	6,47	-3,00	0,00	0,00	85,94
WEA 21	2.240	2.240	22,96	103,1		78,01	5,15	-3,00	0,00	0,00	80,15
WEA 22	2.018	2.018	24,22	103,1	0,00	77,10	4,80	-3,00	0,00	0,00	78,89
WEA 24	1.199	1.199	30,18	103,1		72,58	3,35	-3,00	0,00	0,00	72,93
WEA 25	1.224	1.224	29,96	103,1		72,76	3,40	-3,00	0,00	0,00	73,16
WEA 26	1.276	1.277	29,49	103,1		73,12		-3,00	0,00	0,00	73,62
WEA 27	4.143	4.146	20,68	108,0		83,35	6,98	-3,00	0,00	0,00	87,33
WEA 28	4.317	4.320	20,11	108,0		83,71	7,19	-3,00	0,00	0,00	87,90
WEA 29	3.689	3.692	22,25	108,0		82,35	6,41	-3,00	0,00	0,00	85,76
WEA 30	4.172	4.175	20,58	108,0		83,41	7,01	-3,00	0,00	0,00	87,43
WEA 31	3.608	3.611	22,55	108,0		82,15	6,31	-3,00	0,00	0,00	85,46
WEA 32	4.526	4.528	19,45	108,0		84,12	7,44	-3,00	0,00	0,00	88,56
WEA 33	4.239	4.242	20,36	108,0		83,55		-3,00	0,00	0,00	87,65
WEA 34	5.161	5.163	15,78	106,1		85,26	8,11	-3,00	0,00	0,00	90,37
WEA 35	3.197	3.200	24,14	108,0		81,10	5,76	-3,00	0,00	0,00	83,86
WEA 36	2.765	2.768	26,00	108,0	0,00	79,84	5,16	-3,00	0,00	0,00	82,00
WEA 37	4.798	4.800	18,63	108,0	0,00	84,63	7,75	-3,00	0,00	0,00	89,38
WEA 38	3.639	3.642	22,44	108,0		82,23	6,35	-3,00	0,00	0,00	85,57
WEA 39	5.186	5.188	11,09	101,5		85,30	8,07	-3,00	0,00	0,00	90,37
WEA 40	3.222	3.225	20,30	104,2	0,00	81,17	5,76	-3,00	0,00	0,00	83,93
WEA 41	3.807	3.810	18,10	104,2	0,00	82,62	6,51	-3,00	0,00	0,00	86,13
WEA 42	3.422	3.425	17,66	102,4	0,00	81,69	6,00	-3,00	0,00	0,00	84,70
Summe			43,95								

Seite 46 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg

09.02.2022 16:11/3.5.576

+49 40 8557 2734

DECIBEL - Annahmen für Schallberechnung

Berechnung: VB

Schallberechnungs-Modell:
ISO 9613-2 Deutschland (Interimsverfahren)

Windgeschwindigkeit (in 10 m Höhe): Lautester Wert bis 95% Nennleistung

Bodeneffekt:

Feste Werte, Agr: -3,0, Dc: 0,0

Meteorologischer Koeffizient, CO:

0.0 dB

Art der Anforderung in der Berechnung: 1: WEA-Geräusch vs. Schallrichtwert (z.B. DK, DE, SE, NL)

Schallleistungspegel in der Berechnung: Schallwerte sind Lwa-Werte (Mittlere Schallleistungspegel; Standard)

Einzeltöne: Fester Zuschlag wird zu Schallemission von WEA mit Einzeltönen zugefügt

WEA-Katalog

Aufpunkthöhe ü.Gr.:

5,0 m; Aufpunkthöhe in Immissionsort-Objekt hat Vorrang vor Angabe im Modell Unsicherheitszuschlag:

0,0 dB; Unsicherheitszuschlag des IP hat Priorität verlangte Unter- (negativ) oder zulässige Überschreitung (positiv) des Schallrichtwerts:

Oktavbanddaten verwendet

Frequenzabhängige Luftdämpfung 63 125 250 50

500 1.000 2.000 4.000 63 125 250 500 1.000 2.000 4.000 8.000 [dB/km] [dB/km] [dB/km] [dB/km] [dB/km] [dB/km] [dB/km] [dB/km] [dB/km] 0,10 0,40 1,00 1,90 3,70 9,70 32,80 117,00

Alle Koordinatenangaben in: UTM (north)-ETRS89 Zone: 32

WEA: GE WIND ENERGY 5.5-158 Thrust 700 5500 158.0 !O! **Schall:** NRO105_105+2,1dB(A)

 Datenquelle
 Quelle/Datum
 Quelle Bearbeitet

 Noise_Emission-NRO_5.3-158-50Hz_FGW_NRO100-105_GE_03
 08.09.2021
 USER
 17.09.2021
 12:27

SigP wird in GE Dok mit 0,8 angegeben, gleichzeitig wieder aufgeweicht, weil Unsicherheiten für Spektren typischerweise höher liegen als bei Pegeln.

Also gem LAI 1,2 verwendet.

Oktavbänder LWA Einzelton Status Nabenhöhe Windgeschwindigkeit

[m/s] [dB(A)] 10,0 107,1 Von WEA-Katalog

WEA: GE WIND ENERGY 5.5-158 Thrust 700 5500 158.0 !O!

Schall: NRO102 102+2,1dB(A)

Datenquelle Quelle/Datum Quelle Bearbeitet Noise_Emission-NRO_5.3-158-50Hz_FGW_NRO100-105_GE_r03 08.09.2021 USER 17.09.2021 12:26

SigP wird in GE Dok mit 0,8 angegeben, gleichzeitig wieder aufgeweicht, weil Unsicherheiten für Spektren typischerweise höher liegen als bei Pegeln.

Also gem LAI 1,2 verwendet.

Oktavbänder Status Nabenhöhe Windgeschwindigkeit LWA Einzelton 125 250 500 1000 2000 4000 8000 63 [dB(A)] 104,1 [m] 161,0 [m/s] 10,0 Von WEA-Katalog

Seite 47 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg

09.02.2022 16:11/3.5.576

+49 40 8557 2734

DECIBEL - Annahmen für Schallberechnung

Berechnung: VB

WEA: GE WIND ENERGY 5.5-158 Thrust 700 5500 158.0 !O! Schall: NO106_106+2,1dB(A)

Quelle/Datum Quelle Bearbeitet 08.09.2021 USER 17.09.2021 12:25 Noise Emission-NO 5.3-158-50Hz FGW GE r03 08.09.2021

SigP wird in GE Dok mit 0,8 angegeben, gleichzeitig wieder aufgeweicht, weil Unsicherheiten für Spektren typischerweise höher liegen als bei Pegeln.

Also gem LAI 1,2 verwendet.

Oktavbänder Nabenhöhe Windgeschwindigkeit LWA Einzelton

[dB(A)] 10,0 100 [m] 161,0 [m/s] [dB] [dB] [dB] Von WEA-Katalog

WEA: ENERCON E-138 EP3 E2 4200 138.3 !O!

Schall: BMIIs_105,3+1,3dB(A)

Datenquelle Quelle/Datum Quelle Bearbeitet Genehmigung Landkreis Rotenburg Az. 63/20744-19-13 30.09.2021 USER 30.09.2021 16:27

10,0

Von WEA-Katalog

Oktavbänder Nabenhöhe Windgeschwindigkeit LWA Einzelton 1000 2000 4000 8000 Status [m/s] [dB(A)] 106,6

WEA: ENERCON E-40/5.40 500 40.3 !O!

Schall: 102+RefSpek_102+2,1dB(A)

Quelle/Datum Quelle Bearbeitet Datenquelle IEL, 4245-19-L2 + Referenzspektrum 08.09.2021 USER 08.09.2021 17:10

erstellt LZi

Oktavbänder Nabenhöhe Windgeschwindigkeit LWA Einzelton 125 250 500 1000 2000 4000 8000 Status [m] 65,0 63 [dB(A)] 104,1 [dB] [dB] [dB] [dB] [dB] 83,8 92,2 96,4 98,6 98,1 [m/s]Von WEA-Katalog 10,0

WEA: ENERCON E-101 3000 101.0 !-!

Schall: 106,5+2,1dB(A)

Datenquelle Quelle/Datum Quelle Bearbeitet
Pegel aus IEL GS, Spek. aus DWG MN15052.A0 08.09.2021 USER 09.09.2021 09:48

erstellt LZi

Nabenhöhe Windgeschwindigkeit LWA Einzelton

Status 63 125 250 500 1000 2000 4000 8000 [m] 99,0 [dB(A)] [dB] [dB] [dB] [m/s] Von WEA-Katalog 10,0 108.5 88.7 95.8 101.9 104.3 102.4 96.7

WEA: ENERCON E-40/6.44 600 44.0 !O!

Schall: 102,0+2,1dB(A)

Quelle/Datum Quelle Bearbeitet 08.09.2021 USER 08.09.2021 17:15 Datenguelle IEL, 4245-19-L2 und Referenzspektrum 08.09.2021

erstellt LZi

Oktavbänder

Status Nabenhöhe Windgeschwindigkeit LWA Einzelton 63 125 250 500 1000 2000 4000 8000 [m] 50,0 [dB] [dB] [dB] [dB] [dB] [dB] [dB] 82,8 91,2 95,4 97,6 97,1 95,1 91,1 [dB(A)] [m/s] 10,0 Von WEA-Katalog 103,1 Nein

Seite 48 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -

Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

09.02.2022 16:11/3.5.576

DECIBEL - Annahmen für Schallberechnung

Berechnung: VB

WEA: ENERCON E-101 3000 101.0 !-! Schall: 106,0+2,1dB(A)

Quelle/Datum Quelle Bearbeitet Pegel aus IEL GS, Spek. aus DWG MN15052.A0 08.09.2021 USER 08.09.2021 17:24 erstellt LZi

Oktavbänder

63 125 250 [dB] [dB] [dB] Nabenhöhe Windgeschwindigkeit LWA Einzelton 1000 2000 4000 8000 Status [m] 149,0 [dB(A)][m/s] [dB] [dB] [dB] [dB] [dB] Von WEA-Katalog 10,0 108,0

WEA: ENERCON E-101 3000 101.0 !-!

Schall: 104,0+2,1dB(A)

Quelle/Datum Quelle Bearbeitet 08.09.2021 USER 08.09.2021 17:24 Pegel aus IEL GS, Spek. aus DWG MN15052.A0 08.09.2021

Oktavbänder Nabenhöhe Windgeschwindigkeit LWA Einzelton 125 250 500 63 [m] 149,0 [m/s] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] 86,7 93,6 99,6 101,9 100,1 94,5 [dB] Von WEA-Katalog 10,0 106,1

WEA: ENERCON E-101 3000 101.0 !-!

Schall: 99,0+2,1dB(A)

Quelle/Datum Quelle Bearbeitet Datenquelle Pegel aus IEL GS, Spek. aus DWG MN15052.A0 08.09.2021 erstellt LZi USER 08.09.2021 17:25

Oktavbänder LWA Einzelton Nabenhöhe Windgeschwindigkeit Status [dB(A)] 101,5 [m/s] Von WEA-Katalog 10,0

WEA: ENERCON E-101 3000 101.0 !-!

Schall: 102,0+2,1dB(A)

Quelle/Datum Quelle Bearbeitet 08.09.2021 USER 08.09.2021 17:24 Datenguelle Pegel aus IEL GS, Spek. aus DWG MN15052.A0 08.09.2021 erstellt LZi

Oktavbänder 125 250 500 1000 2000 4000 8000 Nabenhöhe Windgeschwindigkeit LWA Einzelton Status 63 [dB] [dB] [dB] [dB] [dB] [dB] [dB] 85,1 91,8 97,7 99,9 98,2 92,7 86,9 [m] 149,0 [m/s] [dB(A)] Von WEA-Katalog 10.0 104.2 Nein

WEA: ENERCON E-101 3000 101.0 !-!

Schall: 100,0+2,1dB(A)

Datenquelle Quelle/Datum Quelle Bearbeitet
Pegel aus IEL GS, Spek. aus DWG MN15052.A0 08.09.2021 USER 08.09.2021 17:23

erstellt LZi

Oktavbänder Status Nabenhöhe Windgeschwindigkeit LWA Finzelton 63 125 250 500 1000 2000 4000 8000 [dB] [dB] [dB] [dB] [dB] [dB(A)] [m/s] [dB] [dB] 149,0 10,0 Von WEA-Katalog 102,4 Nein 83,5 90,1 95,8

Schall-Immissionsort: TA Lärm - Außenbereich (1)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Seite 49 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

09.02.2022 16:11/3.5.576

DECIBEL - Annahmen für Schallberechnung

Berechnung: VB

Schall-Immissionsort: IP 02 Schall-Immissionsort: TA Lärm - Außenbereich (2)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 03 Schall-Immissionsort: TA Lärm - Reines Wohngebiet / Kurgebiet (3)

Vordefinierter Berechnungsstandard: Reines Wohngebiet / Kurgebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 35,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 04 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (4)

Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40.0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 05 Schall-Immissionsort: TA Lärm - Außenbereich (5)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45.0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 06 Schall-Immissionsort: TA Lärm - Außenbereich (6)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45.0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: TA Lärm - Außenbereich (7)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45.0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 08 Schall-Immissionsort: TA Lärm - Außenbereich (8)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 09 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (9)

Vordefinierter Berechnungsstandard: Allgemeines Wohngebie Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: TA Lärm - Außenbereich (10)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Seite 50 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

09.02.2022 16:11/3.5.576

DECIBEL - Annahmen für Schallberechnung

Berechnung: VB Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 11 Schall-Immissionsort: TA Lärm - Außenbereich (11)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 12 Schall-Immissionsort: TA Lärm - Außenbereich (12)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 13 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (13)

Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 14 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (14)

Vordefinierter Berechnungsstandard: Allgemeines Wohngebie Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 15 Schall-Immissionsort: TA Lärm - Außenbereich (15)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 16 Schall-Immissionsort: TA Lärm - Außenbereich (16)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 17 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (17)

Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 18 Schall-Immissionsort: TA Lärm - Außenbereich (18)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Seite 51 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

09.02.2022 16:11/3.5.576

DECIBEL - Annahmen für Schallberechnung

Berechnung: VB

Schall-Immissionsort: IP 19 Schall-Immissionsort: TA Lärm - Außenbereich (19)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 20 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (20) Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

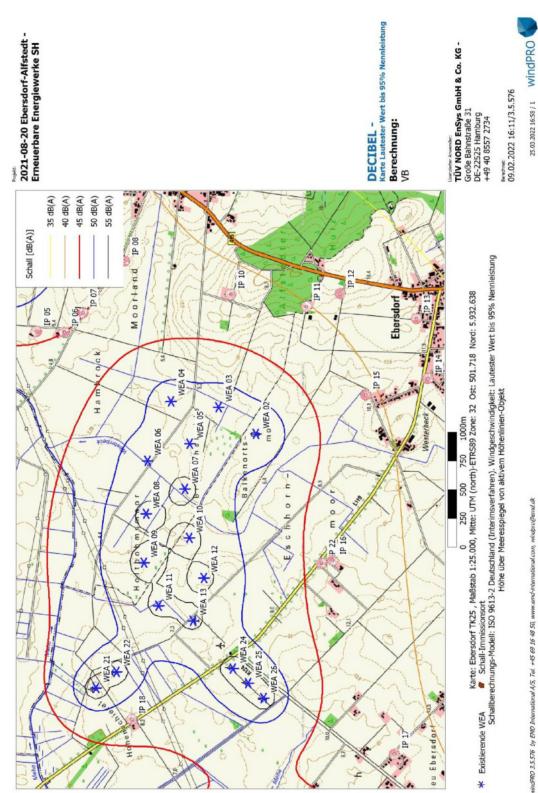
Schallrichtwert: 40,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 21 Schall-Immissionsort: TA Lärm - Reines Wohngebiet / Kurgebiet (21)

Vordefinierter Berechnungsstandard: Reines Wohngebiet / Kurgebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 35.0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 22 Schall-Immissionsort: TA Lärm - Außenbereich (22)


Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45.0 dB(A) Keine Abstandsanforderung

Seite 52 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Seite 53 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

Berechnet: 17.09.2021 13:50/3.4.424

DECIBEL - Hauptergebnis

Berechnung: VB BHKW

ISO 9613-2 Deutschland

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Lautester Wert bis 95% Nennleistung Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Industriegebiet: // dB(A)
Dorf- und Mischgebiet, Außenbereich: 45 dB(A)
Reines Wohngebiet / Kurgebiet u.ä. : 35 dB(A)
Gewerbegebiet: 50 dB(A)
Allgemeines Wohngebiet: 40 dB(A)
Kur- und Feriengebiet: 35 dB(A)

Alle Koordinatenangaben in: UTM (north)-ETRS89 Zone: 32

WEA

				WEA	-Тур					Schall	werte		
Ost	Nord	ZE	Beschreibung	Ak-	Hersteller	Тур	Nenn-	Rotor-	Naben-	Quelle	Name	Windge-	LWA
				tu-			leistung	durch-	höhe			schwin-	
				ell				messer				digkeit	
		[m]					[kW]	[m]	[m]			[m/s]	[dB(A)]
503.214	5.931.767	12,6	ABC Experime.	. Nein	ABC	Experimental-1/1	1	1,0	5,0	USER	BHKW_100,0+1,3dB(A)	10,0	101,3
504.615	5.932.471	1,0 /	ABC Experime.	. Nein	ABC	Experimental-1/1	1	1,0	5,0	USER	BHKW_100,0+1,3dB(A)	10,0	101,3
504.287	5.930.364	10,0 /	ABC Experime	. Nein	ABC	Experimental-1/1	1	1,0	5,0	USER	BHKW_100,0+1,3dB(A)	10,0	101,3
500.683	5.931.288	10,0 /	ABC Experime	. Nein	ABC	Experimental-1/1	1	1,0	5,0	USER	BHKW_100,0+1,3dB(A)	10,0	101,3
503.387	5.931.093	10,0 /	ABC Experime	. Nein	ABC	Experimental-1/1	1	1,0	5,0	USER	BHKW_92,0+1,3dB(A)	10,0	93,3
503.118	5.930.958	10,0 /	ABC Experime.	. Nein	ABC	Experimental-1/1	1	1,0	5,0	USER	BHKW_89,0+1,3dB(A)	10,0	90,3
502.712	5.930.554	10,0 /	ABC Experime.	. Nein	ABC	Experimental-1/1	1	1,0	5,0	USER	BHKW_81,0+1,3dB(A)	10,0	82,3
503.243	5.930.530	10,0 /	ABC Experime.	. Nein	ABC	Experimental-1/1	1	1,0	5,0	USER	BHKW_95,5+1,3dB(A)	10,0	96,8
						Experimental-1/1	1	1,0	5,0	USER	BHKW_92,0+1,3dB(A)	10,0	93,3
502.714	5.930.540	10,0 /	ABC Experime	. Nein	ABC	Experimental-1/1	1	1,0	5,0	USER	BHKW_81,0+1,3dB(A)	10,0	82,3
	503.214 504.615 504.287 500.683 503.387 503.118 502.712 503.243 503.650	503.214 5.931.767 504.615 5.932.471 504.287 5.930.364 500.683 5.931.288 503.318 5.930.958 502.712 5.930.554 503.243 5.930.530 503.650 5.930.452	503.214 5.931.767 12,6 / 504.615 5.932.471 1,0 / 504.287 5.930.364 10,0 / 500.683 5.931.288 10,0 / 503.387 5.931.093 10,0 / 503.318 5.930.958 10,0 / 502.712 5.930.554 10,0 / 503.243 5.930.530 10,0 / 503.650 5.930.452 10,0 /	[m] 503.214 5.931.767 12,6 ABC Experime 504.615 5.932.471 1,0 ABC Experime 504.287 5.930.364 10,0 ABC Experime 500.683 5.931.288 10,0 ABC Experime 503.387 5.931.093 10,0 ABC Experime 503.318 5.930.595 10,0 ABC Experime 502.712 5.930.554 10,0 ABC Experime 503.243 5.930.530 10,0 ABC Experime 503.243 5.930.530 10,0 ABC Experime 503.650 5.930.452 10,0 ABC Experime.	Ost Nord Z Beschreibung Aktuell [m] 503.214 5.931.767 12,6 ABC Experime Nein 504.287 5.933.471 1,0 ABC Experime Nein 504.287 5.933.281 10,0 ABC Experime Nein 503.287 5.931.288 10,0 ABC Experime Nein 503.118 5.930.958 10,0 ABC Experime Nein 502.712 5.930.554 10,0 ABC Experime Nein 503.243 5.930.530 10,0 ABC Experime Nein 503.243 5.930.530 10,0 ABC Experime Nein 503.263 5.930.452 10,0 ABC Experime Nein 503.650 5.930.652 10,0 ABC Experime Nein 503.650 10,0 ABC Experime Nein 503	tu- ell [m] 503.214 5.931.767 12,6 ABC Experime Nein ABC 504.615 5.932.471 1,0 ABC Experime Nein ABC 504.287 5.930.364 10,0 ABC Experime Nein ABC	Ost Nord Z Beschreibung ku- tu- tu- ell Ak- tu- tu- ell Hersteller Typ tu- ell 503.214 5.931.767 12,6 ABC Experime Nein ABC Experimental-1/1 504.287 5.930.364 10,0 ABC Experime Nein ABC Experimental-1/1 503.638 5.931.288 10,0 ABC Experime Nein ABC Experimental-1/1 503.387 5.931.093 10,0 ABC Experime Nein ABC Experimental-1/1 503.118 5.930.958 10,0 ABC Experime Nein ABC Experimental-1/1 502.712 5.930.554 10,0 ABC Experime Nein ABC Experimental-1/1 503.243 5.930.452 10,0 ABC Experime Nein ABC Experimental-1/1 503.650 5.930.452 10,0 ABC Experime Nein ABC Experimental-1/1	Ost Nord Z Beschreibung Ak- leiturg tu- leiturg ell Ak- lersteller Typ Nenn- leistung leiturg leiturg ell 503.214 5.931.767 12,6 ABC Experime Nein ABC Experimental-1/1 1 Experimental-1/1 1 504.287 5.930.364 10,0 ABC Experime Nein ABC Experimental-1/1 1 Experimental-1/1 1 503.683 5.931.288 10,0 ABC Experime Nein ABC Experimental-1/1 1 Experimental-1/1 1 503.387 5.930.958 10,0 ABC Experime Nein ABC Experimental-1/1 1 Experimental-1/1 1 502.712 5.930.554 10,0 ABC Experime Nein ABC ABC Experimental-1/1 1 503.283 5.930.530 10,0 ABC Experime Nein ABC Experimental-1/1 1 Experimental-1/1 1	Nord	Nord	Ost Nord Z Beschreibung Mach tuturelel Ak- Hersteller tuturelel Typ Nenn Roter leistung durch leistung dur	Nord	Nort

Berechnungsergebnisse

Beurteilungspegel

Dec	ircinangspeger								
Scha	II-Immissionsort					Anforderung	Beurteilur	ngspegel	Anforderung erfüllt?
Nr.	Name	Ost	Nord	Z	Auf- punkt- höhe	Schall	Von WEA	Distanz z.Richtwert	Schall
				[m]	[m]	[dB(A)]	[dB(A)]	[m]	
IP 01	Schall-Immissionsort: TA Lärm - Außenbereich (1)	501.543	5.935.093	7,2	5,0	45,0	15,0	3.557	Ja
IP 02	Schall-Immissionsort: TA Lärm - Außenbereich (2)	501.794	5.935.074	8,7	5,0	45,0	15,4	3.433	Ja
IP 03	Schall-Immissionsort: TA Lärm - Reines Wohngebiet / Kurgebiet (3)	502.455	5.936.060	10,0	5,0	35,0	12,6	3.728	Ja
IP 04	Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (4)	502.511	5.935.962	10,0	5,0	40,0	13,0	3.802	Ja
IP 05	Schall-Immissionsort: TA Lärm - Außenbereich (5)	503.093	5.934.320	0,0	5,0	45,0	20,2	2.233	Ja
IP 06	Schall-Immissionsort: TA Lärm - Außenbereich (6)	503.089	5.934.077	1,0	5,0	45,0	21,3	2.052	Ja
IP 07	Schall-Immissionsort: TA Lärm - Außenbereich (7)	503.258	5.933.918	3,9	5,0	45,0	22,3	1.821	Ja
IP 08	Schall-Immissionsort: TA Lärm - Außenbereich (8)	503.708	5.933.555	6,0	5,0	45,0	25,2	1.252	Ja
IP 09	Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (9)	504.550	5.933.358	10,0	5,0	40,0	28,7	615	Ja
IP 10	Schall-Immissionsort: TA Lärm - Außenbereich (10)	503.418	5.932.633	10,0	5,0	45,0	30,1	724	Ja
IP 11	Schall-Immissionsort: TA Lärm - Außenbereich (11)	503.310	5.931.980	20,0	5,0	45,0	41,8	70	Ja
IP 12	Schall-Immissionsort: TA Lärm - Außenbereich (12)	503.426	5.931.685	14,6	5,0	45,0	41,9	64	Ja
IP 13	Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (13)	503.207	5.931.023	10,0	5,0	40,0	41,0	-46	Nein
IP 14	Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (14)	502.686	5.930.926	10,0	5,0	40,0	32,5	309	Ja
IP 15	Schall-Immissionsort: TA Lärm - Außenbereich (15)	502.543	5.931.463	10,0	5,0	45,0	31,9	569	Ja
IP 16	Schall-Immissionsort: TA Lärm - Außenbereich (16)	501.103	5.931.750	10,0	5,0	45,0	32,0	460	Ja
IP 17	Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (17)	499.418	5.931.214	10,0	5,0	40,0	24,5	995	Ja
IP 18	Schall-Immissionsort: TA Lärm - Außenbereich (18)	499.720	5.933.494	6,9	5,0	45,0	17,8	2.242	
IP 19	Schall-Immissionsort: TA Lärm - Außenbereich (19)	499.834	5.934.697	2,1	5,0	45,0	13,7	3.348	Ja
IP 20	Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (20)	498.616	5.935.327	10,0	5,0	40,0	9,3	4.266	За
IP 21	Schall-Immissionsort: TA Lärm - Reines Wohngebiet / Kurgebiet (21)	497.682	5.930.304	13,2	5,0	35,0	13,6	2.706	Ja
IP 22	Schall-Immissionsort: TA Lärm - Außenbereich (22)	501.077	5.931.846	10,0	5,0	45,0	31,2	518	Ja

Seite 54 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

Lizenderter Anwender: **TÜV NORD EnSys GmbH & Co. KG -**Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

Berechnet: 17.09.2021 13:50/3.4.424

DECIBEL - Hauptergebnis

Berechnung: VB BHKW Abstände (m)

	WEA									
Schall-Immissionsort	BGA 01	BGA 02	BGA 03	BGA 04	BGA 05	BGA 06	BGA 07	BGA 08	BGA 09	BGA 10
IP 01	3722	4039	5467	3901	4405	4425	4687	4869	5097	4701
IP 02	3599	3838	5329	3946	4288	4324	4612	4769	4981	4626
IP 03	4360	4189	5983	5090	5054	5145	5512	5586	5734	5526
IP 04	4253	4076	5873	5019	4947	5041	5412	5481	5626	5426
IP 05	2556	2395	4132	3873	3240	3362	3785	3793	3908	3799
IP 06	2313	2215	3901	3683	2999	3119	3543	3550	3668	3557
IP 07	2151	1984	3700	3681	2828	2963	3408	3388	3488	3422
IP 08	1855	1413	3243	3780	2483	2663	3162	3061	3104	3175
IP 09	2078	889	3006	4386	2546	2795	3353	3115	3042	3363
IP 10	890	1208	2430	3048	1540	1702	2196	2110	2193	2208
IP 11	234	1394	1888	2717	890	1040	1546	1452	1565	1558
IP 12	227	1425	1577	2772	593	790	1338	1169	1253	1348
IP 13	744	2020	1265	2538	193	110	682	494	723	690
IP 14	993	2471	1697	2035	721	433	373	683	1074	387
IP 15	737	2304	2061	1868	922	765	925	1166	1499	939
IP 16	2111	3585	3473		2377	2165	2005	2463	2859	2015
IP 17	3836	5347	4943	1267	3971	3709	3359	3886	4300	3364
IP 18	3898	5001	5537	2407	4383	4240	4195	4604	4970	4206
IP 19	4473	5274	6213		5061	4976	5045	5384	5708	5057
IP 20	5815	6644	7536		6379	6273	6290	6665	7008	6302
IP 21	5722	7264	6605		5759	5475	5036	5566	5970	5038
IP 22	2138	3593	3536	683	2430	2226	2084	2534	2926	2094

Seite 55 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

17.09.2021 13:50/3.4.424

DECIBEL - Detaillierte Ergebnisse

Berechnung: VB BHKWSchallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s Annahmen

Berechneter L(DW) = LWA, ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet

(Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

Schallleistungspegel der WEA K: Einzeltöne

Richtwirkungskorrektur Dc:

Adiv: Dämpfung aufgrund geometrischer Ausbreitung Dämpfung aufgrund von Luftabsorption Aatm: Dämpfung aufgrund des Bodeneffekts Agr: Dämpfung aufgrund von Abschirmung Abar:

Dämpfung aufgrund verschiedener anderer Effekte Amisc:

Cmet: Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP 01 Schall-Immissionsort: TA Lärm - Außenbereich (1)

Lautester Wert bis 95% Nennleistung **WEA**

AAFW													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
BGA 01	3.722	3.722	10,3	Ja	10,12	101,3	3,01	82,42	7,07	4,71	0,00	0,00	94,19
BGA 02	4.039	4.039	5,8	Nein	8,71	101,3	3,01	83,13	7,67	4,80	0,00	0,00	95,60
BGA 03	5.467	5.467	5,7	Nein	3,37	101,3	3,01	85,76	10,39	4,80	0,00	0,00	100,94
BGA 04	3.901	3.901	8,9	Ja	9,35	101,3	3,01	82,82	7,41	4,72	0,00	0,00	94,96
BGA 05	4.405	4.405	8,3	Ja	-0,67	93,3	3,01	83,88	8,37	4,74	0,00	0,00	96,98
BGA 06	4.425	4.425	8,5	Ja	-3,75	90,3	3,01	83,92	8,41	4,73	0,00	0,00	97,06
BGA 07	4.687	4.687	8,6	Ja	-12,75	82,3	3,01	84,42	8,91	4,74	0,00	0,00	98,06
BGA 08	4.869	4.869	8,0	Ja	1,07	96,8	3,01	84,75	9,25	4,74	0,00	0,00	98,74
BGA 09	5.097	5.097	7,7	Ja	-3,27	93,3	3,01	85,15	9,68	4,75	0,00	0,00	99,58
BGA 10	4.701	4.701	8,5	Ja	-12,80	82,3	3,01	84,44	8,93	4,74	0,00	0,00	98,11
Summa					15.00								

Schall-Immissionsort: TA Lärm - Außenbereich (2)

Lautester Wert bis 95% Nennleistung

WEA													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
BGA 01	3.599	3.599	10,8	Ja	10,65	101,3	3,01	82,12	6,84	4,70	0,00	0,00	93,66
BGA 02	3.838	3.838	6,4	Nein	9,53	101,3	3,01	82,68	7,29	4,80	0,00	0,00	94,78
BGA 03	5.329	5.329	5,3	Nein	3,85	101,3	3,01	85,53	10,13	4,80	0,00	0,00	100,46
BGA 04	3.946	3.946	9,9	Ja	9,18	101,3	3,01	82,92	7,50	4,71	0,00	0,00	95,13
BGA 05	4.288	4.288	8,8	Ja	-0,21	93,3	3,01	83,64	8,15	4,73	0,00	0,00	96,52
BGA 06	4.324	4.324	8,8	Ja	-3,35	90,3	3,01	83,72	8,22	4,73	0,00	0,00	96,66
BGA 07	4.612	4.612	8,8	Ja	-12,47	82,3	3,01	84,28	8,76	4,73	0,00	0,00	97,78
BGA 08	4.769	4.769	8,4	Ja	1,44	96,8	3,01	84,57	9,06	4,74	0,00	0,00	98,37
BGA 09	4.981	4.981	8,2	Ja	-2,84	93,3	3,01	84,95	9,46	4,74	0,00	0,00	99,15
BGA 10	4.626	4.626	8,8	Ja	-12,52	82,3	3,01	84,30	8,79	4,74	0,00	0,00	97,83
Summe					15,41	1000						30,5	

Schall-Immissionsort: IP 03 Schall-Immissionsort: TA Lärm - Reines Wohngebiet / Kurgebiet (3)

Lautester Wert bis 95% Nennleistung

WEA													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
BGA 01	4.360	4.360	10,9	Ja	7,52	101,3	3,01	83,79	8,28	4,72	0,00	0,00	96,79
BGA 02	4.189	4.189	4,7	Nein	8,11	101,3	3,01	83,44	7,96	4,80	0,00	0,00	96,20
BGA 03	5.983	5.983	5,1	Nein	1,60	101,3	3,01	86,54	11,37	4,80	0,00	0,00	102,71
BGA 04	5.090	5.090	8,7	Nein	4,70	101,3	3,01	85,14	9,67	4,80	0,00	0,00	99,61
BGA 05	5.054	5.054	8,7	Ja	-3,11	93,3	3,01	85,07	9,60	4,74	0,00	0,00	99,42
BGA 06	5.145	5.145	9,2	Ja	-6,43	90,3	3,01	85,23	9,78	4,74	0,00	0,00	99,74
BGA 07	5.512	5.512	9,1	Ja	-15,73	82,3	3,01	85,83	10,47	4,74	0,00	0,00	101,04
BGA 08	5.586	5.586	8,8	Ja	-1,49	96,8	3,01	85,94	10,61	4,75	0,00	0,00	101,30
BGA 09	5.734	5.734	7.4	Nein	-5.55	93.3	3.01	86.17	10.89	4.80	0.00	0.00	101.86

(Fortsetzung nächste Seite)...

Seite 56 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

17.09.2021 13:50/3.4.424

DECIBEL - Detaillierte Ergebnisse

Berechnung: VB BHKWSchallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

..(Fortsetzung von vorheriger Seite)

	•		
	E		

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
BGA 10	5.526	5.526	9,1	Ja	-15,78	82,3	3,01	85,85	10,50	4,74	0,00	0,00	101,09
Summe					12.62								

Schall-Immissionsort: IP 04 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (4)

Lautester Wert bis 95% Nennleistung

WEA													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
BGA 01	4.253	4.253	11,1	Ja	7,94	101,3	3,01	83,57	8,08	4,71	0,00	0,00	96,37
BGA 02	4.076	4.076	4,8	Nein	8,56	101,3	3,01	83,20	7,74	4,80	0,00	0,00	95,75
BGA 03	5.873	5.873	5,1	Nein	1,97	101,3	3,01	86,38	11,16	4,80	0,00	0,00	102,34
BGA 04	5.019	5.019	9,8	Nein	4,96	101,3	3,01	85,01	9,54	4,80	0,00	0,00	99,35
BGA 05	4.947	4.947	8,8	Ja	-2,72	93,3	3,01	84,89	9,40	4,74	0,00	0,00	99,03
BGA 06	5.041	5.041	9,3	Ja	-6,05	90,3	3,01	85,05	9,58	4,74	0,00	0,00	99,36
BGA 07	5.412	5.412	9,2	Ja	-15,38	82,3	3,01	85,67	10,28	4,74	0,00	0,00	100,69
BGA 08	5.481	5.481	8,9	Ja	-1,13	96,8	3,01	85,78	10,41	4,74	0,00	0,00	100,94
BGA 09	5.626	5.626	7,5	Nein	-5,18	93,3	3,01	86,00	10,69	4,80	0,00	0,00	101,50
BGA 10	5.426	5.426	9,2	Ja	-15,43	82,3	3,01	85,69	10,31	4,74	0,00	0,00	100,74
Summe					13,02								

Schall-Immissionsort: TA Lärm - Außenbereich (5)

Lautester Wert bis 95% Nennleistung

WEA													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
BGA 01	2.556	2.556	4,9	Ja	15,57	101,3	3,01	79,15	4,86	4,73	0,00	0,00	88,74
BGA 02	2.395	2.395	-0,2	Nein	16,37	101,3	3,01	78,59	4,55	4,80	0,00	0,00	87,94
BGA 03	4.132	4.132	-2,7	Nein	8,34	101,3	3,01	83,32	7,85	4,80	0,00	0,00	95,98
BGA 04	3.873	3.873	6,5	Ja	9,45	101,3	3,01	82,76	7,36	4,74	0,00	0,00	94,86
BGA 05	3.240	3.240	1,0	Nein	4,14	93,3	3,01	81,21	6,16	4,80	0,00	0,00	92,17
BGA 06	3.362	3.362	3,1	Nein	0,59	90,3	3,01	81,53	6,39	4,80	0,00	0,00	92,72
BGA 07	3.785	3.785	3,0	Nein	-9,24	82,3	3,01	82,56	7,19	4,80	0,00	0,00	94,55
BGA 08	3.793	3.793	2,5	Nein	5,22	96,8	3,01	82,58	7,21	4,80	0,00	0,00	94,59
BGA 09	3.908	3.908	-0,5	Nein	1,25	93,3	3,01	82,84	7,43	4,80	0,00	0,00	95,06
BGA 10	3.799	3.799	3,0	Nein	-9,30	82,3	3,01	82,59	7,22	4,80	0,00	0,00	94,61
Summe					20,16								

Schall-Immissionsort: TA Lärm - Außenbereich (6)

Lautester Wert bis 95% Nennleistung

WEA													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
BGA 01	2.313	2.313	4,8	Ja	16,90	101,3	3,01	78,29	4,40	4,73	0,00	0,00	87,41
BGA 02	2.215	2.215	0,8	Nein	17,39	101,3	3,01	77,91	4,21	4,80	0,00	0,00	86,92
BGA 03	3.901	3.901	-2,9	Nein	9,27	101,3	3,01	82,82	7,41	4,80	0,00	0,00	95,04
BGA 04	3.683	3.683	6,5	Ja	10,25	101,3	3,01	82,32	7,00	4,74	0,00	0,00	94,06
BGA 05	2.999	2.999	1,0	Nein	5,27	93,3	3,01	80,54	5,70	4,80	0,00	0,00	91,04
BGA 06	3.119	3.119	3,1	Nein	1,70	90,3	3,01	80,88	5,93	4,80	0,00	0,00	91,61
BGA 07	3.543	3.543	2,9	Nein	-8,21	82,3	3,01	81,99	6,73	4,80	0,00	0,00	93,52
BGA 08	3.550	3.550	2,6	Nein	6,26	96,8	3,01	82,01	6,75	4,80	0,00	0,00	93,55
BGA 09	3.668	3.668	-0,4	Nein	2,25	93,3	3,01	82,29	6,97	4,80	0,00	0,00	94,06
BGA 10	3.557	3.557	2,9	Nein	-8,27	82,3	3,01	82,02	6,76	4,80	0,00	0,00	93,58
Summe					21,27								

Schall-Immissionsort: IP 07 Schall-Immissionsort: TA Lärm - Außenbereich (7)

Lautester Wert bis 95% Nennleistung

WEA													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
BGA 01	2.151	2.151	4,8	Nein	17,77	101,3	3,01	77,65	4,09	4,80	0,00	0,00	86,54
BGA 02	1.984	1.984	1,8	Nein	18,79	101,3	3,01	76,95	3,77	4,80	0,00	0,00	85,52
BGA 03	3.700	3.700	-2,2	Nein	10,12	101,3	3,01	82,36	7,03	4,80	0,00	0,00	94,19
BGA 04	3.681	3.681	7,3	Ja	10,27	101,3	3,01	82,32	6,99	4,73	0,00	0,00	94,04

(Fortsetzung nächste Seite)...

Seite 57 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

17.09.2021 13:50/3.4.424

DECIBEL - Detaillierte Ergebnisse

Berechnung: VB BHKW Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

...(Fortsetzung von vorheriger Seite)

WEA													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
BGA 05	2.828	2.828	0,9	Nein	6,11	93,3	3,01	80,03	5,37	4,80	0,00	0,00	90,20
BGA 06	2.963	2.963	3,7	Ja	2,49	90,3	3,01	80,44	5,63	4,76	0,00	0,00	90,82
BGA 07	3.408	3.408	3,8	Ja	-7,58	82,3	3,01	81,65	6,48	4,76	0,00	0,00	92,89
BGA 08	3.388	3.388	2,3	Nein	6,97	96,8	3,01	81,60	6,44	4,80	0,00	0,00	92,84
BGA 09	3.488	3.488	-0,1	Nein	3,03	93,3	3,01	81,85	6,63	4,80	0,00	0,00	93,28
BGA 10	3.422	3.422	3,7	Ja	-7,64	82,3	3,01	81,68	6,50	4,76	0,00	0,00	92,95
Summe					22,29								

Schall-Immissionsort: IP 08 Schall-Immissionsort: TA Lärm - Außenbereich (8)

Lautester Wert bis 95% Nennleistung

WEA													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
BGA 01	1.855	1.855	3,2	Nein	19,62	101,3	3,01	76,37	3,52	4,80	0,00	0,00	84,69
BGA 02	1.413	1.413	2,3	Nein	22,82	101,3	3,01	74,01	2,69	4,80	0,00	0,00	81,49
BGA 03	3.243	3.243	-0,8	Nein	12,13	101,3	3,01	81,22	6,16	4,80	0,00	0,00	92,18
BGA 04	3.780	3.780	6,0	Ja	9,83	101,3	3,01	82,55	7,18	4,75	0,00	0,00	94,48
BGA 05	2.483	2.483	-0,6	Nein	7,89	93,3	3,01	78,90	4,72	4,80	0,00	0,00	88,42
BGA 06	2.663	2.663	1,1	Nein	3,94	90,3	3,01	79,51	5,06	4,80	0,00	0,00	89,37
BGA 07	3.162	3.162	3,3	Nein	-6,50	82,3	3,01	81,00	6,01	4,80	0,00	0,00	91,81
BGA 08	3.061	3.061	0,3	Nein	8,48	96,8	3,01	80,72	5,82	4,80	0,00	0,00	91,33
BGA 09	3.104	3.104	-0,7	Nein	4,78	93,3	3,01	80,84	5,90	4,80	0,00	0,00	91,53
BGA 10	3.175	3.175	3,3	Nein	-6,56	82,3	3,01	81,03	6,03	4,80	0,00	0,00	91,87
Summe					25,16								

Schall-Immissionsort: IP 09 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (9)

Lautester Wert bis 95% Nennleistung

WEA														
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
BGA 01	2.078	2.078	-0,7	Nein	18,21	101,3	3,01	77,35	3,95	4,80	0,00	0,00	86,10	
BGA 02	889	889	2,9	Ja	27,95	101,3	3,01	69,98	1,69	4,69	0,00	0,00	76,36	
BGA 03	3.006	3.006	3,0	Nein	13,24	101,3	3,01	80,56	5,71	4,80	0,00	0,00	91,07	
BGA 04	4.386	4.386	6,1	Ja	7,38	101,3	3,01	83,84	8,33	4,75	0,00	0,00	96,93	
BGA 05	2.546	2.546	1,9	Nein	7,55	93,3	3,01	79,12	4,84	4,80	0,00	0,00	88,76	
BGA 06	2.795	2.795	1,7	Nein	3,27	90,3	3,01	79,93	5,31	4,80	0,00	0,00	90,04	
BGA 07	3.353	3.353	1,6	Nein	-7,37	82,3	3,01	81,51	6,37	4,80	0,00	0,00	92,68	
BGA 08	3.115	3.115	2,7	Nein	8,22	96,8	3,01	80,87	5,92	4,80	0,00	0,00	91,59	
BGA 09	3.042	3.042	3,6	Nein	5,07	93,3	3,01	80,66	5,78	4,80	0,00	0,00	91,24	
BGA 10	3.363	3.363	1,6	Nein	-7,42	82,3	3,01	81,54	6,39	4,80	0,00	0,00	92,73	
Summe					28.66									

Schall-Immissionsort: IP 10 Schall-Immissionsort: TA Lärm - Außenbereich (10)

WEA													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
BGA 01	890	890	-0,1	Nein	27,83	101,3	3,01	69,98	1,69	4,80	0,00	0,00	76,48
BGA 02	1.208	1.208	1,8	Nein	24,57	101,3	3,01	72,64	2,30	4,80	0,00	0,00	79,74
BGA 03	2.430	2.430	-2,8	Nein	16,18	101,3	3,01	78,71	4,62	4,80	0,00	0,00	88,13
BGA 04	3.048	3.048	6,0	Ja	13,11	101,3	3,01	80,68	5,79	4,73	0,00	0,00	91,20
BGA 05	1.540	1.540	-2,0	Nein	13,83	93,3	3,01	74,75	2,93	4,80	0,00	0,00	82,48
BGA 06	1.702	1.702	0,9	Nein	9,66	90,3	3,01	75,62	3,23	4,80	0,00	0,00	83,65
BGA 07	2.196	2.196	3,2	Nein	-1,49	82,3	3,01	77,83	4,17	4,80	0,00	0,00	86,80
BGA 08	2.110	2.110	0,7	Nein	13,51	96,8	3,01	77,49	4,01	4,80	0,00	0,00	86,30
BGA 09	2.193	2.193	-0,8	Nein	9,52	93,3	3,01	77,82	4,17	4,80	0,00	0,00	86,79
BGA 10	2.208	2.208	3,2	Nein	-1,57	82,3	3,01	77,88	4,20	4,80	0,00	0,00	86,88
Summe					30,10								

Seite 58 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

17.09.2021 13:50/3.4.424

DECIBEL - Detaillierte Ergebnisse

Berechnung: VB BHKW Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s Schall-Immissionsort: IP 11 Schall-Immissionsort: TA Lärm - Außenbereich (11)

Lautester Wert bis 95% Nennleistung

WEA														
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
BGA 01	234	234	6,3	Ja	41,67	101,3	3,01	58,38	0,44	3,82	0,00	0,00	62,64	
BGA 02	1.394	1.394	0,0	Nein	22,97	101,3	3,01	73,89	2,65	4,80	0,00	0,00	81,34	
BGA 03	1.888	1.888	7,0	Ja	19,53	101,3	3,01	76,52	3,59	4,67	0,00	0,00	84,78	
BGA 04	2.717	2.717	10,0	Ja	14,79	101,3	3,01	79,68	5,16	4,67	0,00	0,00	89,52	
BGA 05	890	890	7,1	Ja	20,10	93,3	3,01	69,99	1,69	4,52	0,00	0,00	76,21	
BGA 06	1.040	1.040	8,3	Ja	15,47	90,3	3,01	71,34	1,98	4,52	0,00	0,00	77,84	
BGA 07	1.546	1.546	9,1	Ja	2,99	82,3	3,01	74,79	2,94	4,60	0,00	0,00	82,32	
BGA 08	1.452	1.452	8,5	Ja	18,22	96,8	3,01	74,24	2,76	4,60	0,00	0,00	81,59	
BGA 09	1.565	1.565	8,0	Ja	13,82	93,3	3,01	74,89	2,97	4,62	0,00	0,00	82,49	
BGA 10	1.558	1.558	9,1	Ja	2,90	82,3	3,01	74,85	2,96	4,60	0,00	0,00	82,41	
Summe					41.83									

Schall-Immissionsort: IP 12 Schall-Immissionsort: TA Lärm - Außenbereich (12)

Lautester Wert bis 95% Nennleistung

WEA														
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
BGA 01	227	227	4,7	Ja	41,70	101,3	3,01	58,13	0,43	4,04	0,00	0,00	62,60	
BGA 02	1.425	1.425	0,8	Nein	22,72	101,3	3,01	74,08	2,71	4,80	0,00	0,00	81,59	
BGA 03	1.577	1.577	5,7	Ja	21,68	101,3	3,01	74,96	3,00	4,68	0,00	0,00	82,63	
BGA 04	2.772	2.772	7,2	Ja	14,48	101,3	3,01	79,85	5,27	4,71	0,00	0,00	89,83	
BGA 05	593	593	5,3	Ja	24,23	93,3	3,01	66,47	1,13	4,49	0,00	0,00	72,08	
BGA 06	790	790	6,1	Ja	18,33	90,3	3,01	68,95	1,50	4,53	0,00	0,00	74,98	
BGA 07	1.338	1.338	6,7	Ja	4,61	82,3	3,01	73,53	2,54	4,63	0,00	0,00	80,70	
BGA 08	1.169	1.169	6,4	Ja	20,62	96,8	3,01	72,36	2,22	4,61	0,00	0,00	79,19	
BGA 09	1.253	1.253	6,1	Ja	16,34	93,3	3,01	72,96	2,38	4,63	0,00	0,00	79,97	
BGA 10	1.348	1.348	6,7	Ja	4,52	82,3	3,01	73,60	2,56	4,63	0,00	0,00	80,79	
Summe					41,95									

Schall-Immissionsort: IP 13 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (13)

Lautester Wert bis 95% Nennleistung

WEA														
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
BGA 01	744	744	5,8	Ja	29,94	101,3	3,01	68,43	1,41	4,53	0,00	0,00	74,37	
BGA 02	2.020	2.020	-1,0	Nein	18,57	101,3	3,01	77,11	3,84	4,80	0,00	0,00	85,74	
BGA 03	1.265	1.265	5,0	Ja	24,20	101,3	3,01	73,04	2,40	4,66	0,00	0,00	80,11	
BGA 04	2.538	2.538	5,0	Ja	15,67	101,3	3,01	79,09	4,82	4,73	0,00	0,00	88,64	
BGA 05	193	193	5,0	Ja	35,38	93,3	3,00	56,72	0,37	3,84	0,00	0,00	60,92	
BGA 06	110	110	5,0	Ja	38,23	90,3	2,99	51,84	0,21	3,01	0,00	0,00	55,06	
BGA 07	682	682	5,0	Ja	11,80	82,3	3,01	67,67	1,30	4,54	0,00	0,00	73,51	
BGA 08	494	494	5,0	Ja	29,55	96,8	3,01	64,88	0,94	4,44	0,00	0,00	70,26	
BGA 09	723	723	5,0	Ja	22,20	93,3	3,01	68,18	1,37	4,56	0,00	0,00	74,11	
BGA 10	690	690	5,0	Ja	11,67	82,3	3,01	67,78	1,31	4,55	0,00	0,00	73,64	
Summe					40.99									

Schall-Immissionsort: IP 14 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (14)

WEA														
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
BGA 01	993	993	6,1	Ja	26,90	101,3	3,01	70,94	1,89	4,59	0,00	0,00	77,41	
BGA 02	2.471	2.471	-0,8	Nein	15,96	101,3	3,01	78,86	4,70	4,80	0,00	0,00	88,35	
BGA 03	1.697	1.697	5,0	Ja	20,80	101,3	3,01	75,59	3,22	4,70	0,00	0,00	83,52	
BGA 04	2.035	2.035	5,0	Ja	18,55	101,3	3,01	77,17	3,87	4,72	0,00	0,00	85,76	
BGA 05	721	721	5,0	Ja	22,23	93,3	3,01	68,15	1,37	4,56	0,00	0,00	74,08	
BGA 06	433	433	5,0	Ja	24,36	90,3	3,01	63,73	0,82	4,39	0,00	0,00	68,95	
BGA 07	373	373	5,0	Ja	17,85	82,3	3,01	62,43	0,71	4,32	0,00	0,00	67,46	
BGA 08	683	683	5,0	Ja	26,27	96,8	3,01	67,69	1,30	4,54	0,00	0,00	73,54	
BGA 09	1.074	1.074	5,0	Ja	18,01	93,3	3,01	71,62	2,04	4,64	0,00	0,00	78,30	
BGA 10	387	387	5,0	Ja	17,48	82,3	3,01	62,75	0,74	4,34	0,00	0,00	67,83	
Summe					32.47									

Seite 59 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

17.09.2021 13:50/3.4.424

DECIBEL - Detaillierte Ergebnisse

Berechnung: VB BHKW Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s Schall-Immissionsort: IP 15 Schall-Immissionsort: TA Lärm - Außenbereich (15)

Lautester Wert bis 95% Nennleistung

WEA													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
BGA 01	737	737	6,0	Ja	30,05	101,3	3,01	68,35	1,40	4,51	0,00	0,00	74,26
BGA 02	2.304	2.304	-2,9	Nein	16,88	101,3	3,01	78,25	4,38	4,80	0,00	0,00	87,43
BGA 03	2.061	2.061	5,0	Ja	18,39	101,3	3,01	77,28	3,92	4,72	0,00	0,00	85,92
BGA 04	1.868	1.868	5,0	Ja	19,62	101,3	3,01	76,43	3,55	4,71	0,00	0,00	84,69
BGA 05	922	922	5,0	Ja	19,66	93,3	3,01	70,29	1,75	4,61	0,00	0,00	76,65
BGA 06	765	765	5,0	Ja	18,61	90,3	3,01	68,68	1,45	4,57	0,00	0,00	74,70
BGA 07	925	925	5,0	Ja	8,62	82,3	3,01	70,32	1,76	4,61	0,00	0,00	76,69
BGA 08	1.166	1.166	5,0	Ja	20,60	96,8	3,01	72,34	2,22	4,65	0,00	0,00	79,21
BGA 09	1.499	1.499	5,0	Ja	14,26	93,3	3,01	74,52	2,85	4,69	0,00	0,00	82,05
BGA 10	939	939	5,0	Ja	8,46	82,3	3,01	70,45	1,78	4,62	0,00	0,00	76,85
Summe					31,88								

Schall-Immissionsort: IP 16 Schall-Immissionsort: TA Lärm - Außenbereich (16)

Lautester Wert bis 95% Nennleistung

WEA														
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
BGA 01	2.111	2.111	6,9	Ja	18,12	101,3	3,01	77,49	4,01	4,69	0,00	0,00	86,19	
BGA 02	3.585	3.585	-0,7	Nein	10,61	101,3	3,01	82,09	6,81	4,80	0,00	0,00	93,70	
BGA 03	3.473	3.473	5,0	Ja	11,15	101,3	3,01	81,81	6,60	4,75	0,00	0,00	93,16	
BGA 04	624	624	5,0	Ja	31,69	101,3	3,01	66,91	1,19	4,52	0,00	0,00	72,62	
BGA 05	2.377	2.377	5,1	Ja	8,55	93,3	3,01	78,52	4,52	4,73	0,00	0,00	87,76	
BGA 06	2.165	2.165	5,0	Ja	6,77	90,3	3,01	77,71	4,11	4,72	0,00	0,00	86,54	
BGA 07	2.005	2.005	5,0	Ja	-0,25	82,3	3,01	77,04	3,81	4,71	0,00	0,00	85,57	
BGA 08	2.463	2.463	5,0	Ja	11,57	96,8	3,01	78,83	4,68	4,73	0,00	0,00	88,24	
BGA 09	2.859	2.859	5,0	Ja	6,02	93,3	3,01	80,12	5,43	4,74	0,00	0,00	90,29	
BGA 10	2.015	2.015	5,0	Ja	-0,32	82,3	3,01	77,08	3,83	4,71	0,00	0,00	85,63	
Summe					32,04									

Schall-Immissionsort: IP 17 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (17)

Lautester Wert bis 95% Nennleistung

WEA													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
BGA 01	3.836	3.836	6,3	Ja	9,60	101,3	3,01	82,68	7,29	4,74	0,00	0,00	94,71
BGA 02	5.347	5.347	-0,7	Nein	3,79	101,3	3,01	85,56	10,16	4,80	0,00	0,00	100,52
BGA 03	4.943	4.943	5,0	Ja	5,27	101,3	3,01	84,88	9,39	4,77	0,00	0,00	99,04
BGA 04	1.267	1.267	5,0	Ja	24,18	101,3	3,01	73,06	2,41	4,66	0,00	0,00	80,13
BGA 05	3.971	3.971	5,0	Ja	1,03	93,3	3,01	82,98	7,54	4,76	0,00	0,00	95,28
BGA 06	3.709	3.709	5,0	Ja	-0,88	90,3	3,01	82,38	7,05	4,75	0,00	0,00	94,19
BGA 07	3.359	3.359	5,0	Ja	-7,35	82,3	3,01	81,53	6,38	4,75	0,00	0,00	92,66
BGA 08	3.886	3.886	5,0	Ja	4,88	96,8	3,01	82,79	7,38	4,76	0,00	0,00	94,93
BGA 09	4.300	4.300	5,0	Ja	-0,29	93,3	3,01	83,67	8,17	4,76	0,00	0,00	96,60
BGA 10	3.364	3.364	5,0	Ja	-7,37	82,3	3,01	81,54	6,39	4,75	0,00	0,00	92,68
Summe					24,52								

Schall-Immissionsort: IP 18 Schall-Immissionsort: TA Lärm - Außenbereich (18)

WEA													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
BGA 01	3.898	3.898	8,7	Ja	9,37	101,3	3,01	82,82	7,41	4,72	0,00	0,00	94,94
BGA 02	5.001	5.001	4,1	Nein	5,03	101,3	3,01	84,98	9,50	4,80	0,00	0,00	99,28
BGA 03	5.537	5.537	5,9	Ja	3,16	101,3	3,01	85,86	10,52	4,76	0,00	0,00	101,15
BGA 04	2.407	2.407	3,8	Ja	16,36	101,3	3,01	78,63	4,57	4,75	0,00	0,00	87,95
BGA 05	4.383	4.383	6,6	Ja	-0,60	93,3	3,01	83,84	8,33	4,75	0,00	0,00	96,91
BGA 06	4.240	4.240	6,3	Ja	-3,04	90,3	3,01	83,55	8,06	4,75	0,00	0,00	96,35
BGA 07	4.195	4.195	4,9	Ja	-10,87	82,3	3,01	83,45	7,97	4,76	0,00	0,00	96,18
BGA 08	4.604	4.604	5,6	Ja	2,04	96,8	3,01	84,26	8,75	4,76	0,00	0,00	97,77
BGA 09	4.970	4.970	5,8	Ja	-2,82	93,3	3,01	84,93	9,44	4,76	0,00	0,00	99,13
BGA 10	4.206	4.206	4,9	Ja	-10,92	82,3	3,01	83,48	7,99	4,76	0,00	0,00	96,23
Summe					17,84								

Seite 60 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

17.09.2021 13:50/3.4.424

DECIBEL - Detaillierte Ergebnisse

Berechnung: VB BHKW Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s Schall-Immissionsort: IP 19 Schall-Immissionsort: TA Lärm - Außenbereich (19)

Lautester Wert bis 95% Nennleistung

WEA													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
BGA 01	4.473	4.473	9,0	Ja	7,07	101,3	3,01	84,01	8,50	4,73	0,00	0,00	97,24
BGA 02	5.274	5.274	4,0	Nein	4,05	101,3	3,01	85,44	10,02	4,80	0,00	0,00	100,26
BGA 03	6.213	6.213	5,8	Ja	0,87	101,3	3,01	86,87	11,81	4,77	0,00	0,00	103,44
BGA 04	3.513	3.513	5,1	Ja	10,97	101,3	3,01	81,91	6,67	4,75	0,00	0,00	93,34
BGA 05	5.061	5.061	6,9	Ja	-3,14	93,3	3,01	85,08	9,62	4,75	0,00	0,00	99,45
BGA 06	4.976	4.976	7,0	Ja	-5,84	90,3	3,01	84,94	9,46	4,75	0,00	0,00	99,15
BGA 07	5.045	5.045	6,5	Ja	-14,09	82,3	3,01	85,06	9,58	4,76	0,00	0,00	99,40
BGA 08	5.384	5.384	6,5	Ja	-0,80	96,8	3,01	85,62	10,23	4,76	0,00	0,00	100,61
BGA 09	5.708	5.708	6,2	Ja	-5,43	93,3	3,01	86,13	10,85	4,76	0,00	0,00	101,74
BGA 10	5.057	5.057	6,5	Ja	-14,13	82,3	3,01	85,08	9,61	4,76	0,00	0,00	99,44
Summe					13,67								

Schall-Immissionsort: IP 20 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (20)

Lautester Wert bis 95% Nennleistung

WEA													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
BGA 01	5.815	5.815	12,5	Ja	2,24	101,3	3,01	86,29	11,05	4,73	0,00	0,00	102,07
BGA 02	6.644	6.644	7,2	Nein	-0,56	101,3	3,01	87,45	12,62	4,80	0,00	0,00	104,87
BGA 03	7.536	7.536	9,7	Ja	-3,31	101,3	3,01	88,54	14,32	4,76	0,00	0,00	107,62
BGA 04	4.537	4.537	8,0	Ja	6,81	101,3	3,01	84,14	8,62	4,74	0,00	0,00	97,50
BGA 05	6.379	6.379	10,5	Ja	-7,65	93,3	3,01	87,09	12,12	4,74	0,00	0,00	103,96
BGA 06	6.273	6.273	10,4	Ja	-10,30	90,3	3,01	86,95	11,92	4,74	0,00	0,00	103,61
BGA 07	6.290	6.290	9,2	Ja	-18,36	82,3	3,01	86,97	11,95	4,75	0,00	0,00	103,67
BGA 08	6.665	6.665	9,8	Ja	-5,08	96,8	3,01	87,48	12,66	4,75	0,00	0,00	104,89
BGA 09	7.008	7.008	9,9	Ja	-9,67	93,3	3,01	87,91	13,31	4,75	0,00	0,00	105,98
BGA 10	6.302	6.302	9,2	Ja	-18,40	82,3	3,01	86,99	11,97	4,75	0,00	0,00	103,71
Summe					0.31								

Schall-Immissionsort: IP 21 Schall-Immissionsort: TA Lärm - Reines Wohngebiet / Kurgebiet (21)

Lautester Wert bis 95% Nennleistung

WEA													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
BGA 01	5.722	5.722	7,8	Ja	2,53	101,3	3,01	86,15	10,87	4,75	0,00	0,00	101,78
BGA 02	7.264	7.264	1,0	Nein	-2,51	101,3	3,01	88,22	13,80	4,80	0,00	0,00	106,82
BGA 03	6.605	6.605	5,6	Nein	-0,44	101,3	3,01	87,40	12,55	4,80	0,00	0,00	104,75
BGA 04	3.158	3.158	6,5	Ja	12,59	101,3	3,01	80,99	6,00	4,73	0,00	0,00	91,72
BGA 05	5.759	5.759	6,3	Ja	-5,60	93,3	3,01	86,21	10,94	4,76	0,00	0,00	101,91
BGA 06	5.475	5.475	6,2	Ja	-7,62	90,3	3,01	85,77	10,40	4,76	0,00	0,00	100,93
BGA 07	5.036	5.036	5,7	Nein	-14,10	82,3	3,01	85,04	9,57	4,80	0,00	0,00	99,41
BGA 08	5.566	5.566	5,7	Nein	-1,47	96,8	3,01	85,91	10,57	4,80	0,00	0,00	101,28
BGA 09	5.970	5.970	5,6	Nein	-6,35	93,3	3,01	86,52	11,34	4,80	0,00	0,00	102,66
BGA 10	5.038	5.038	5,7	Nein	-14,11	82,3	3,01	85,04	9,57	4,80	0,00	0,00	99,42
Summe					13.60								

Schall-Immissionsort: IP 22 Schall-Immissionsort: TA Lärm - Außenbereich (22)

WEA													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	A
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
BGA 01	2.138	2.138	7,2	Ja	17,96	101,3	3,01	77,60	4,06	4,68	0,00	0,00	86,35
BGA 02	3.593	3.593	-0,2	Nein	10,58	101,3	3,01	82,11	6,83	4,80	0,00	0,00	93,73
BGA 03	3.536	3.536	5,0	Ja	10,87	101,3	3,01	81,97	6,72	4,75	0,00	0,00	93,44
BGA 04	683	683	5,0	Ja	30,78	101,3	3,01	67,69	1,30	4,54	0,00	0,00	73,53
BGA 05	2.430	2.430	5,3	Ja	8,26	93,3	3,01	78,71	4,62	4,72	0,00	0,00	88,05
BGA 06	2.226	2.226	5,1	Ja	6,41	90,3	3,01	77,95	4,23	4,72	0,00	0,00	86,90
BGA 07	2.084	2.084	5,0	Ja	-0,74	82,3	3,01	77,38	3,96	4,72	0,00	0,00	86,05
BGA 08	2.534	2.534	5,0	Ja	11,18	96,8	3,01	79,08	4,82	4,73	0,00	0,00	88,63
BGA 09	2.926	2.926	5,0	Ja	5,68	93,3	3,01	80,33	5,56	4,74	0,00	0,00	90,63
BGA 10	2.094	2.094	5,0	Ja	-0,81	82,3	3,01	77,42	3,98	4,72	0,00	0,00	86,12
Summe					31,18								

Seite 61 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

17.09.2021 13:50/3.4.424

DECIBEL - Annahmen für Schallberechnung

Berechnung: VB BHKW

Schallberechnungs-Modell: ISO 9613-2 Deutschland

Windgeschwindigkeit (in 10 m Höhe): Lautester Wert bis 95% Nennleistung

Bodeneffekt:

Alternatives Verf.

Meteorologischer Koeffizient, CO:

0.0 dB

Art der Anforderung in der Berechnung: 1: WEA-Geräusch vs. Schallrichtwert (z.B. DK, DE, SE, NL)

Schallleistungspegel in der Berechnung: Schallwerte sind Lwa-Werte (Mittlere Schallleistungspegel; Standard)

Einzeltöne: Fester Zuschlag wird zu Schallemission von WEA mit Einzeltönen zugefügt

WEA-Katalog

Aufpunkthöhe ü.Gr.:

5,0 m; Aufpunkthöhe in Immissionsort-Objekt hat Vorrang vor Angabe im Modell Unsicherheitszuschlag:

0,0 dB; Unsicherheitszuschlag des IP hat Priorität verlangte Unter- (negativ) oder zulässige Überschreitung (positiv) des Schallrichtwerts:

0,0 dB(A)

Keine Oktavbanddaten verwendet

Frequenzunabhängige Luftdämpfung: 1,9 dB/km

Alle Koordinatenangaben in: UTM (north)-ETRS89 Zone: 32

WEA: ABC Experimental 1-1 1.0 !-! Schall: BHKW_100,0+1,3dB(A)

 Datenquelle
 Quelle/Datum
 Quelle
 Bearbeitet

 IEL, 4245-19-L2
 09.09.2021
 USER
 09.09.2021
 12:27

erstellt LZi

Nabenhöhe Windgeschwindigkeit Status LWA Einzelton [m] 5,0 [m/s] [dB(A)] 10,0 101,3 Von WEA-Katalog 101.3 Nein

WEA: ABC Experimental 1-1 1.0 !-! Schall: BHKW_92,0+1,3dB(A)

Datenquelle Quelle/Datum Quelle Bearbeitet
IEL, 4245-19-L2 09.09.2021 USER 09.09.2021 12:28

erstellt LZi

Status Nabenhöhe Windgeschwindigkeit LWA Einzelton [m] 5,0 [m/s] [dB(A)] 10,0 93,3 Von WEA-Katalog

WEA: ABC Experimental 1-1 1.0 !-! Schall: BHKW_89,0+1,3dB(A)

Datenquelle Quelle/Datum Quelle Bearbeitet IEL, 4245-19-L2 09.09.2021 USER 09.09.2021 12:29 erstellt LZi

Status Nabenhöhe Windgeschwindigkeit LWA Einzelton [m] 5,0 [m/s][dB(A)]10,0 Von WEA-Katalog 90,3 Nein

Seite 62 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

17.09.2021 13:50/3.4.424

DECIBEL - Annahmen für Schallberechnung

Berechnung: VB BHKW WEA: ABC Experimental 1-1 1.0 !-! Schall: BHKW_81,0+1,3dB(A)

Datenquelle Quelle/Datum Quelle Bearbeitet IEL, 4245-19-L2 09.09.2021 USER 09.09.2021 12:36 erstellt LZi

Nabenhöhe Windgeschwindigkeit LWA [dB(A)] LWA Einzelton Status [m] 5,0 [m/s] Von WEA-Katalog Nein 82.3

WEA: ABC Experimental 1-1 1.0 !-! Schall: BHKW_95,5+1,3dB(A)

Datenquelle Quelle/Datum Quelle Bearbeitet IEL, 4245-19-L2 09.09.2021 USER 09.09.2021 12:36 erstellt LZi

Nabenhöhe Windgeschwindigkeit LWA Einzelton [m] 5,0 [m/s][dB(A)]10,0 Von WEA-Katalog 96,8

Schall-Immissionsort: TA Lärm - Außenbereich (1)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 02 Schall-Immissionsort: TA Lärm - Außenbereich (2)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 03 Schall-Immissionsort: TA Lärm - Reines Wohngebiet / Kurgebiet (3)

Vordefinierter Berechnungsstandard: Reines Wohngebiet / Kurgebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 35,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 04 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (4) Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 05 Schall-Immissionsort: TA Lärm - Außenbereich (5)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 06 Schall-Immissionsort: TA Lärm - Außenbereich (6)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Seite 63 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

17.09.2021 13:50/3.4.424

DECIBEL - Annahmen für Schallberechnung

Berechnung: VB BHKW

Schall-Immissionsort: IP 07 Schall-Immissionsort: TA Lärm - Außenbereich (7)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 08 Schall-Immissionsort: TA Lärm - Außenbereich (8)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 09 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (9)

Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40.0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 10 Schall-Immissionsort: TA Lärm - Außenbereich (10)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45.0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: TA Lärm - Außenbereich (11)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45.0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: TA Lärm - Außenbereich (12)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45.0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 13 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (13)

Vordefinierter Berechnungsstandard: Allgemeines Wohngebie Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 14 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (14)

Vordefinierter Berechnungsstandard: Allgemeines Wohngebie Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 15 Schall-Immissionsort: TA Lärm - Außenbereich (15)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Seite 64 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

17.09.2021 13:50/3.4.424

DECIBEL - Annahmen für Schallberechnung

Berechnung: VB BHKW Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 16 Schall-Immissionsort: TA Lärm - Außenbereich (16)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 17 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (17)

Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 18 Schall-Immissionsort: TA Lärm - Außenbereich (18)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 19 Schall-Immissionsort: TA Lärm - Außenbereich (19)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 20 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (20)

Vordefinierter Berechnungsstandard: Allgemeines Wohngebie Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 21 Schall-Immissionsort: TA Lärm - Reines Wohngebiet / Kurgebiet (21)

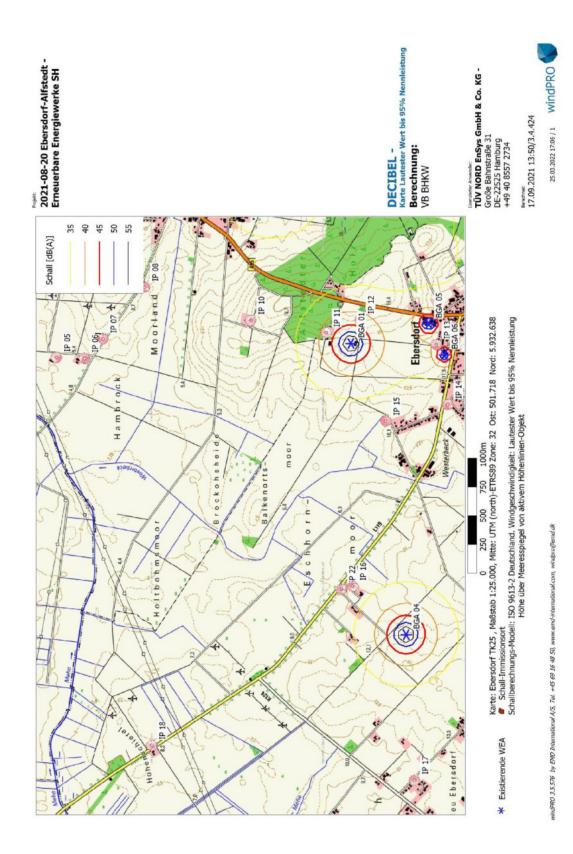
Vordefinierter Berechnungsstandard: Reines Wohngebiet / Kurgebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 35,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 22 Schall-Immissionsort: TA Lärm - Außenbereich (22)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung


Seite 65 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

.

Seite 66 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Seite 67 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

Berechnet: 25.03.2022 08:53/3.5.576

DECIBEL - Hauptergebnis

Berechnung: ZB Var5

ISO 9613-2 Deutschland (Interimsverfahren)

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Lautester Wert bis 95% Nennleistung Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm

Industriegebiet: 70 dB(A)
Dorf- und Mischgebiet, Außenbereich: 45 dB(A)
Reines Wohngebiet / Kurgebiet u.ä. : 35 dB(A)
Gewerbegebiet: 50 dB(A)
Allgemeines Wohngebiet: 40 dB(A)
Kur- und Feriengebiet: 35 dB(A)

Alle Koordinatenangaben in: UTM (north)-ETRS89 Zone: 32

WEA

					WEA	\-Тур					Schall	werte		
	Ost	Nord	Z	Beschreibung	Ak-	Hersteller	Тур	Nenn-	Rotor-	Naben-	Quelle	Name	Windge-	LWA
					tu-			leistung	durch-	höhe			schwin-	
					ell				messer				digkeit	
			[m]					[kW]	[m]	[m]			[m/s]	[dB(A)]
WEA 01 Var5	501.718	5.932.638	3,0	NORDEX N163/.	.Ja	NORDEX	N163/6.X-6.800	6.800	163,0	164,0	USER	Mode0_106,6+2,1dB(A)	10,0	108,7

Berechnungsergebnisse

Beurteilungspegel

Dec	ar centungspeger								
Scha Nr.	II-Immissionsort Name	Ost	Nord	Z	Auf- punkt- höhe	Anforderung Schall	Von WEA	Distanz z.Richtwert	Anforderung erfüllt? Schall
				[m]	[m]	[dB(A)]	[dB(A)]	[m]	
IP 01	Schall-Immissionsort: TA Lärm - Außenbereich (1)	501.543	5.935.093	7,2	5,0		28,3	1.972	Ja
IP 02	Schall-Immissionsort: TA Lärm - Außenbereich (2)	501.794	5.935.074	8,7	5,0			1.949	
IP 03	Schall-Immissionsort: TA Lärm - Reines Wohngebiet / Kurgebiet (3)	502.455	5.936.060	10,0	5,0	35,0	24,1	2.152	Ja
IP 04	Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (4)	502.511	5.935.962	10,0	5,0	40,0	24,4	2.588	Ja
IP 05	Schall-Immissionsort: TA Lärm - Außenbereich (5)	503.093	5.934.320	0,0	5,0	45,0	29,7	1.685	Ja
IP 06	Schall-Immissionsort: TA Lärm - Außenbereich (6)	503.089	5.934.077	1,0	5,0	45,0	30,7	1.499	
IP 07	Schall-Immissionsort: TA Lärm - Außenbereich (7)	503.258	5.933.918	3,9	5,0			1.513	Ja
IP 08	Schall-Immissionsort: TA Lärm - Außenbereich (8)	503.708	5.933.555	6,0	5,0	45,0	29,6	1.702	Ja
IP 09	Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (9)	504.550	5.933.358	10,0	5,0	40,0	26,3	2.091	Ja
IP 10	Schall-Immissionsort: TA Lärm - Außenbereich (10)	503.418	5.932.633	10,0	5,0	45,0	32,5	1.209	Ja
IP 11	Schall-Immissionsort: TA Lärm - Außenbereich (11)	503.310	5.931.980	20,0	5,0	45,0	32,4	1.232	Ja
IP 12	Schall-Immissionsort: TA Lärm - Außenbereich (12)	503.426	5.931.685	14,6	5,0			1.466	Ja
IP 13	Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (13)	503.207	5.931.023	10,0	5,0	40,0	29,6	1.366	Ja
IP 14	Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (14)	502.686	5.930.926	10,0	5,0	40,0	30,9	1.135	Ja
IP 15	Schall-Immissionsort: TA Lärm - Außenbereich (15)	502.543	5.931.463	10,0	5,0	45,0	34,3	945	Ja
IP 16	Schall-Immissionsort: TA Lärm - Außenbereich (16)	501.103	5.931.750	10,0	5,0			590	Ja
IP 17	Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (17)	499.418	5.931.214	10,0	5,0	40,0	27,2	1.873	Ja
IP 18	Schall-Immissionsort: TA Lärm - Außenbereich (18)	499.720	5.933.494	6,9	5,0	45,0	29,7	1.685	Ja
IP 19	Schall-Immissionsort: TA Lärm - Außenbereich (19)	499.834	5.934.697	2,1	5,0	45,0	26,8	2.302	Ja
IP 20	Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (20)	498.616	5.935.327	10,0	5,0			3.275	Ja
IP 21	Schall-Immissionsort: TA Lärm - Reines Wohngebiet / Kurgebiet (21)	497.682	5.930.304	13,2	5,0			3.313	Ja
IP 22	Schall-Immissionsort: TA Lärm - Außenbereich (22)	501.077	5.931.846	10,0	5,0	45,0	37,9	529	Ja

Abstände (m)

	WEA
Schall-Immissionsort	WEA 01 Var5
IP 01	2461
IP 02	2437
IP 03	3500
IP 04	3417
IP 05	2172
IP 06	1988

(Fortsetzung nächste Seite)...

Seite 68 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

Lizenderter Anwender: **TÜV NORD EnSys GmbH & Co. KG -**Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

Berechnet: 25.03.2022 08:53/3.5.576

DECIBEL - Hauptergebnis

Berechnung: ZB Var5

(Fortsetzung von vo	rheriger Seite)
	WEA
Schall-Immissionsort	WEA 01 Var5
IP 07	2002
IP 08	2191
IP 09	2922
IP 10	1700
IP 11	1723
IP 12	1956
IP 13	2197
IP 14	1967
IP 15	1436
IP 16	1080
IP 17	2705
IP 18	2174
IP 19	2791
IP 20	4105
IP 21	4662
IP 22	1019

Seite 69 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

25.03.2022 08:53/3.5.576

DECIBEL - Detaillierte Ergebnisse

Berechnung: ZB Var5Schallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet

(Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

Schallleistungspegel der WEA

K: Einzeltöne

Dc: Richtwirkungskorrektur

Adiv: Dämpfung aufgrund geometrischer Ausbreitung Dämpfung aufgrund von Luftabsorption Aatm: Dämpfung aufgrund des Bodeneffekts Agr: Abar: Dämpfung aufgrund von Abschirmung

Dämpfung aufgrund verschiedener anderer Effekte Amisc:

Cmet: Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP 01 Schall-Immissionsort: TA Lärm - Außenbereich (1)

Lautester Wert bis 95% Nennleistung

WEA

 Abstand
 Schallweg
 Berechnet
 LWA
 Dc
 Adiv
 Aarn
 Agr
 Abar
 Amisc
 A

 [m]
 [m]
 [dB(A)]
 [dB(A)]
 [dB]
 WEA 01 Var5 2.461

Schall-Immissionsort: TA Lärm - Außenbereich (2)

Lautester Wert bis 95% Nennleistung

WEA

 Abstand
 Schallweg
 Berechnet
 LWA
 Dc
 Adiv
 Aarn
 Agr
 Abar
 Amisc
 A

 [m]
 [m]
 [dB(A)]
 [dB(A)]
 [dB]
 [dB]

Schall-Immissionsort: IP 03 Schall-Immissionsort: TA Lärm - Reines Wohngebiet / Kurgebiet (3)

Lautester Wert bis 95% Nennleistung

WEA

Nr. Abstand Schallweg Berechnet LWA g Berechnet LWA Dc Adiv Aatm Agr Abar Amisc A [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 24,15 108,7 0,00 81,89 5,64 -3,00 0,00 0,00 84,53 [m] WEA 01 Var5 3.500

Schall-Immissionsort: IP 04 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (4)

Lautester Wert bis 95% Nennleistung

WEA

 Berechnet
 LWA
 Dc
 Adiv
 Aarn
 Agr
 Abar
 Amisc
 A

 [dB(A)]
 [dB]
 4,24
 Abstand Schallweg Berechnet LWA Nr. [m] WEA 01 Var5 3.417 [m] 3.421

Schall-Immissionsort: IP 05 Schall-Immissionsort: TA Lärm - Außenbereich (5)

Lautester Wert bis 95% Nennleistung

WEA

Abstand Schallweg Berechnet LWA Dc Adiv Aatm Agr Abar Amisc [m] 2.179 [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 29,74 108,7 0,00 77,76 4,17 -3,00 0,00 0,00 WEA 01 Var5 2.172

Schall-Immissionsort: IP 06 Schall-Immissionsort: TA Lärm - Außenbereich (6)

Lautester Wert bis 95% Nennleistung

WEA

Abstand Schallweg Berechnet LWA Dc Adiv Aatm Agr [m] [m] WEA 01 Var5 1.988 1.994 -3,00 0,00 0,00 77,93

Seite 70 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

25.03.2022 08:53/3.5.576

DECIBEL - Detaillierte Ergebnisse

Berechnung: ZB Var5Schallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: IP 07 Schall-Immissionsort: TA Lärm - Außenbereich (7)

Lautester Wert bis 95% Nennleistung

WEA

Abstand Schallweg Berechnet LWA Dc Adiv Aatm Agr Abar Amisc Nr. [m] 2.009 [m] WEA 01 Var5 2.002

Schall-Immissionsort: IP 08 Schall-Immissionsort: TA Lärm - Außenbereich (8)

Lautester Wert bis 95% Nennleistung

 Berechnet
 LWA
 Dc
 Adiv
 Aatm
 Agr
 Abar
 Amisc
 A

 [dB(A)]
 [dB(A)]
 [dB]
 < Nr. Abstand Schallweg Berechnet LWA [m] 2.197 WEA 01 Var5 2.191

Schall-Immissionsort: IP 09 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (9)

Lautester Wert bis 95% Nennleistung

WEA

 Berechnet
 LWA
 Dc
 Adiv
 Aarn
 Agr
 Abar
 Amisc
 A

 [dB(A)]
 [dB]
 2,37
 3,00
 0,00
 0,00
 82,37
 3,00
 0,00
 0,00
 82,37
 3,00
 0,00
 0,00
 0,00
 80,33
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 0,00
 < Abstand Schallweg Berechnet LWA [m] [m] WEA 01 Var5 2.922 2.926

Schall-Immissionsort: TA Lärm - Außenbereich (10)

Lautester Wert bis 95% Nennleistung

WEA

 Abstand
 Schallweg
 Berechnet
 LWA
 Dc
 Adiv
 Aarn
 Agr
 Abar
 Amisc
 A

 [m]
 [m]
 [dB(A)]
 [dB(A)]
 [dB]
 76,18

Schall-Immissionsort: IP 11 Schall-Immissionsort: TA Lärm - Außenbereich (11)

Lautester Wert bis 95% Nennleistung

WEA

 Berechnet
 LWA
 Dc
 Adiv
 Agr
 Abar
 Amisc

 [dB(A)]
 [dB]
 < Abstand Schallweg Berechnet LWA

Schall-Immissionsort: IP 12 Schall-Immissionsort: TA Lärm - Außenbereich (12)

Lautester Wert bis 95% Nennleistung

WEA

 Berechnet
 LWA
 Dc
 Adiv
 Aarn
 Agr
 Abar
 Amisc
 A

 [dB(A)]
 [dB(A)]
 [dB]
 77,74
 Abstand Schallweg Berechnet LWA Nr. [m] 1.961 WEA 01 Var5

Schall-Immissionsort: IP 13 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (13)

Lautester Wert bis 95% Nennleistung

WEA

Abstand Schallweg Berechnet LWA Dc Adiv Aatm Agr Abar Amisc Nr. [m] WEA 01 Var5 2.197 [m] 2.202

Schall-Immissionsort: IP 14 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (14)

Lautester Wert bis 95% Nennleistung

Abstand Schallweg Berechnet LWA Nr. Dc Adiv Aatm Agr Abar Amisc [m] WEA 01 Var5 1.967 [m] 1.973

Schall-Immissionsort: IP 15 Schall-Immissionsort: TA Lärm - Außenbereich (15)

Lautester Wert bis 95% Nennleistung

WEA

 Abstand
 Schallweg
 Berechnet
 LWA
 Dc
 Adiv
 Aarn
 Agr
 Abar
 Amisc
 A

 [m]
 [m]
 [dB(A)]
 [dB(A)]
 [dB]
 WEA 01 Var5 1.436

Seite 71 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

25.03.2022 08:53/3.5.576

DECIBEL - Detaillierte Ergebnisse

Berechnung: ZB Var5Schallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: IP 16 Schall-Immissionsort: TA Lärm - Außenbereich (16)

Lautester Wert bis 95% Nennleistung

WEA

Abstand Schallweg Berechnet LWA Dc Adiv Aatm Agr Abar Amisc Nr. [m] 1.091 [m] WEA 01 Var5 1.080

Schall-Immissionsort: IP 17 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (17)

Lautester Wert bis 95% Nennleistung

 Berechnet
 LWA
 Dc
 Adiv
 Aatm
 Agr
 Abar
 Amisc
 A (dB)

 [dB(A)]
 [dB]
 Abstand Schallweg Berechnet LWA Nr. WEA 01 Var5 2,705 2.709

Schall-Immissionsort: IP 18 Schall-Immissionsort: TA Lärm - Außenbereich (18)

Lautester Wert bis 95% Nennleistung

WEA

 Berechnet
 LWA
 Dc
 Adiv
 Aarn
 Agr
 Abar
 Amisc
 A

 [dB(A)]
 [dB(A)]
 [dB]
 < Abstand Schallweg Berechnet LWA [m] [m] 2.179 WEA 01 Var5 2.174

Schall-Immissionsort: IP 19 Schall-Immissionsort: TA Lärm - Außenbereich (19)

Lautester Wert bis 95% Nennleistung

WEA

 Abstand
 Schallweg
 Berechnet
 LWA
 Dc
 Adiv
 Aarn
 Agr
 Abar
 Amisc
 A

 [m]
 [m]
 [dB(A)]
 [dB(A)]
 [dB]
 2.795 WEA 01 Var5 2.791

Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (20)

Lautester Wert bis 95% Nennleistung

WEA

 Berechnet
 LWA
 Dc
 Adiv
 Aatm
 Agr
 Abar
 Amisc
 A

 [dB(A)]
 [dB]
 Abstand Schallweg Berechnet LWA

Schall-Immissionsort: IP 21 Schall-Immissionsort: TA Lärm - Reines Wohngebiet / Kurgebiet (21)

Lautester Wert bis 95% Nennleistung

WEA

 Berechnet
 LWA
 Dc
 Adiv
 Aatm
 Agr
 Abar
 Amisc
 A

 [dB(A)]
 [dB(A)]
 [dB]
 < Nr. Abstand Schallweg Berechnet LWA [m] 4.665 WEA 01 Var5

Schall-Immissionsort: IP 22 Schall-Immissionsort: TA Lärm - Außenbereich (22)

Lautester Wert bis 95% Nennleistung

WEA

Abstand Schallweg Berechnet LWA Dc Adiv Aatm Agr Abar Amisc Nr. [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] 37,95 108,7 0,00 71,26 2,47 -3,00 0,00 0,00 WEA 01 Var5 1.019 1.030

Seite 72 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

25.03.2022 08:53/3.5.576

DECIBEL - Annahmen für Schallberechnung

Berechnung: ZB Var5

Schallberechnungs-Modell:
ISO 9613-2 Deutschland (Interimsverfahren)

Windgeschwindigkeit (in 10 m Höhe): Lautester Wert bis 95% Nennleistung

Bodeneffekt:

Feste Werte, Agr: -3,0, Dc: 0,0 Meteorologischer Koeffizient, CO:

0.0 dB

Art der Anforderung in der Berechnung: 1: WEA-Geräusch vs. Schallrichtwert (z.B. DK, DE, SE, NL)

Schallleistungspegel in der Berechnung: Schallwerte sind Lwa-Werte (Mittlere Schallleistungspegel; Standard)

Einzeltöne: Fester Zuschlag wird zu Schallemission von WEA mit Einzeltönen zugefügt

WEA-Katalog

Aufpunkthöhe ü.Gr.:

Aurpunktnone u.Gr.:
5,0 m; Aufpunkthöhe in Immissionsort-Objekt hat Vorrang vor Angabe im Modell
Unsicherheitszuschlag:
0,0 dB; Unsicherheitszuschlag des IP hat Priorität
verlangte Unter- (negativ) oder zulässige Überschreitung (positiv) des Schallrichtwerts:

Oktavbanddaten verwendet

Frequenzabhängige Luftdämpfung 63 125 250 50

500 1.000 2.000 4.000 [dB/km] [dB/km

Alle Koordinatenangaben in: UTM (north)-ETRS89 Zone: 32

WEA: NORDEX N163/6.X 6800 163.0 !O! **Schall:** Mode0_106,6+2,1dB(A)

Quelle/Datum Quelle Bearbeitet F008_277_A19_IN 09.02.2022 USER 09.02.2022 15:03

erstellt LZi

Oktavbänder

LWA Einzelton Nabenhöhe Windgeschwindigkeit 63 125 250 [dB] [dB] [dB] [dB] [dB] [dB] [dB] 94,7 99,4 101,7 102,2 102,6 100,5 91,0 [dB(A)] 10,0 108,7 [m/s] Von WEA-Katalog

Schall-Immissionsort: IP 01 Schall-Immissionsort: TA Lärm - Außenbereich (1)

Vordefinierter Berechnungsstandard: Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Keine Abstandsanforderung

Schall-Immissionsort: IP 02 Schall-Immissionsort: TA Lärm - Außenbereich (2)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 03 Schall-Immissionsort: TA Lärm - Reines Wohngebiet / Kurgebiet (3)

Vordefinierter Berechnungsstandard: Reines Wohngebiet / Kurgebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 35,0 dB(A) Keine Abstandsanforderung

Seite 73 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

25.03.2022 08:53/3.5.576

DECIBEL - Annahmen für Schallberechnung

Berechnung: ZB Var5

Schall-Immissionsort: IP 04 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (4)

Vordefinierter Berechnungsstandard: Allgemeines Wohngebie Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 05 Schall-Immissionsort: TA Lärm - Außenbereich (5)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: TA Lärm - Außenbereich (6)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45.0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 07 Schall-Immissionsort: TA Lärm - Außenbereich (7)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45.0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 08 Schall-Immissionsort: TA Lärm - Außenbereich (8)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45.0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 09 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (9)

Vordefinierter Berechnungsstandard: Allgemeines Wohngebie Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40.0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: TA Lärm - Außenbereich (10)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 11 Schall-Immissionsort: TA Lärm - Außenbereich (11)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 12 Schall-Immissionsort: TA Lärm - Außenbereich (12)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Seite 74 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

25.03.2022 08:53/3.5.576

DECIBEL - Annahmen für Schallberechnung

Berechnung: ZB Var5 Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 13 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (13)

Vordefinierter Berechnungsstandard: Allgemeines Wohngebie Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 14 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (14)

Vordefinierter Berechnungsstandard: Allgemeines Wohngebie Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 15 Schall-Immissionsort: TA Lärm - Außenbereich (15)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 16 Schall-Immissionsort: TA Lärm - Außenbereich (16)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 17 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (17)

Vordefinierter Berechnungsstandard: Allgemeines Wohngebie Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 18 Schall-Immissionsort: TA Lärm - Außenbereich (18)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 19 Schall-Immissionsort: TA Lärm - Außenbereich (19)

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 20 Schall-Immissionsort: TA Lärm - Allgemeines Wohngebiet (20)

Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A) Keine Abstandsanforderung

Seite 75 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

2021-08-20 Ebersdorf-Alfstedt - Erneuerbare Energiewerke SH

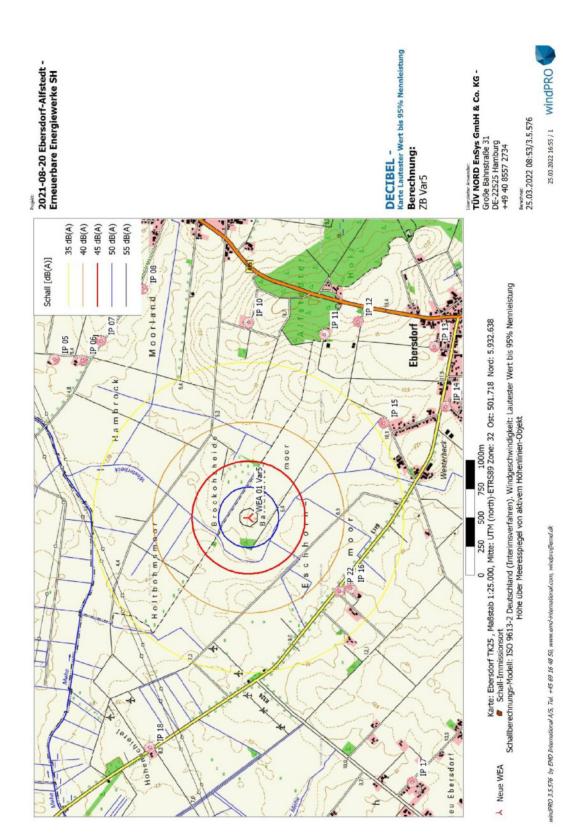
TÜV NORD EnSys GmbH & Co. KG -Große Bahnstraße 31 DE-22525 Hamburg +49 40 8557 2734

25.03.2022 08:53/3.5.576

DECIBEL - Annahmen für Schallberechnung

Berechnung: ZB Var5

Schall-Immissionsort: IP 21 Schall-Immissionsort: TA Lärm - Reines Wohngebiet / Kurgebiet (21)
Vordefinierter Berechnungsstandard: Reines Wohngebiet / Kurgebiet
Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells
Unsicherheitszuschlag: Standardwert des Berechnungsmodells


Schallrichtwert: 35,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: IP 22 Schall-Immissionsort: TA Lärm - Außenbereich (22) Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Seite 76 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Seite 77 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Teilimmissionspegel der Vor- und Zusatzbelastung an	onspeg	Jel der \	/or- unc	l Zusat:	zbelastı		den IP	01 bis	22:												
·M	IP 01	IP 02	IP 03	IP 04	IP 05	IP 06	IP 07	IP 08	IP 09		IP 11 I								IP 20	IP 21	IP 22
	23,93	24,25	20,23	20,58	27,32	28,66	28,96	28,62	25,02	33,55		31,92 2	29,75 30	30,82 35	35,72 33	33,10 22,69	39 24,16	21,63	17,03	15,95	33,31
WEA03	22,56	23,04	19,04	19,42	27,17	28,77	29,16	28,59	24,17		31,55								14,65	12,62	27,78
WEA 05	24,32	24,72	19,98	20,36	27,61	32,06 29,02	32,23 28,93	27,35	22,84										15,89	13,02	28,34
WEA 06	26,67	27,08	21,46	21,86	28,83	30,02	29,41	26,91	22,24										16,96	12,82	26,90
WEA 07	27,53	27,69	22,35	22,70	28,69	29,75	29,40	27,62	23,52										19,48	16,27	32,52
WEA 08	29,72	29,69	23,49	23,82	28,87	29,64	28,96	26,71	22,64										20,84	16,20	30,71
WEA 10	27.70	27.56	22.40	22.67	27.05	27.80	27.39	25.82	22.41										21.38	18.33	34.27
WEA 11	28,25	27,69	22,31	22,51	25,18	25,62	25,07	23,43	20,38										23,73	19,15	31,86
WEA 12	26,67	26,37	21,46	21,68	25,27	25,89	25,52	24,14	21,09										21,97	19,39	35,64
WEA 13 WFA 14	23.25	26,00	25.59	26,15	34,07	32.78	32.83	31.25	19,90 28 49			•	•			•			23, 19 12,68	20,10 7.46	33,80 16.46
WEA 15	23,01	24,32	24,42	25,06	35,64	34,73	35,44	34,30	30,51										12,62	7,82	17,20
WEA 16	22,75	24,00	23,58	24,19	35,87	35,70	37,24	37,07	32,03										12,55	8,07	17,74
WEA 20	29,60	31,05	31,15	31,86	43,31	41,19	40,91	37,81	33,51										18,32	12,86	22,52
WEA21 WFA22	24,24 24 12	23,17	17,95	18,04 17,97	18,73 19 15	18,88 19,36	18,23	16,52 17,05	13,73 14 19										24,02	15,92	22,96
WEA 24	20,05	19,55	15,12	15.28	17.75	18,22	17.87	16.72	14,12										18,84	17,75	30,18
WEA 25	19,27	18,78	14,53	14,68	17,08	17,54	17,22	16,15	13,67										18,60	18,48	29,96
WEA 26	18,52	18,04	13,96	14,11	16,43	16,88	16,60	15,60	13,22										18,32	19,24	29,49
WEA 27	18,81	18,15	15,46	15,44	15,38	15,48	15,12	14,13	12,31										27,14	25,01	20,68
WEA 28	17,80	17,19	14,59	16,59	14,63	14,74 16.38	14,41	13,49	11,75										25,42	25,89	20,11
WEA 30	17,59	17,01	14,37	14,37	14,62	14,77	14,46	13,58	11,86										24,47	27,43	20,58
WEA31	18,82	18,22	15,32	15,35	15,84	16,02	15,71	14,80	12,98							.,			25,11	28,48	22,55
WEA 32	16,51	15,96	13,47	13,47	13,69	13,83	13,54	12,72	11,08										23,18	27,36	19,45
WEA 33	16,74	16,20	13,61	13,63	14,06	14,23	13,96	13,16	11,50										22,81	29,26	20,36
WEA35	19,07	18,51	15,48	15,53	16,39	16,63	16,34	3,47 15,49	7,97 13,65										24,11	30,49	24,14
WEA 36	20,04	19,48	16,24	16,31	17,42	17,70	17,41	16,54	14,61										24,27	30,07	26,00
WEA37	15,14	14,64	12,27	12,28	12,67	12,84	12,59	11,87	10,34										20,92	28,84	18,63
WEA38	17,63	17,11	14,30	14,34	15,12	15,34	15,08	14,30	12,58										22,79	31,86	22,44
WEA 40	14,57	14,07	11,15	11,19	12,22	12,48	12,24	11,48	9,73										18,95	29,18	20,30
WEA41	12,90	12,43	9,76	9,80	10,70	10,94	10,72	10,03	8,42							.,			17,47	30,86	18,10
WEA 42	11,67	11,21	8,43	8,49	9,60	9,87	9,66	8,99	7,35										15,66	30,47	17,66
BGA 07	8.71	9.53	7,57 8.11	8.56	16,57	17,39	18.79	19,62 22,82	10,21			•							-0.56	2,33	10.58
BGA 03	3,37	3,85	1,60	1,97	8,34	9,27	10,12	12,13	13,24										-3,31	-0,44	10,87
BGA 04	9,35	9,18	4,70	4,96	9,45	10,25	10,27	9,83	7,38										6,81	12,59	30,78
BGA 05	-0,67	-0,21	-3,11	-2,72	4,14	5,27	6,11	7,89	7,55	.,									-7,65	-5,60	8,26
BGA 06	-3,75	-3,35	-6,43	-6,05 -15.38	0,59	1,7 2,4	2,49	3,94	3,27										-10,30	-7,62	6,41
BGA 08	1.07	4 4	-1.49	-1.13	5.22	6.26	6.97	8.48	2, 8										-5.08	-1.47	11.18
BGA 09	-3,27	-2,84	-5,55	-5,18	1,25	2,25	3,03	4,78	5,07										-9,67	-6,35	2,68
BGA 10	-12,80	-12,52	-15,78	-15,43	-9,30	-8,27	-7,64	-6,56	-7,42										-18,40	-14,11	-0,81
VB gesamt	39,69	39,80	36,58	37,04	45,96	45,01	45,13	43,44	39,57										37,51	41,06	44,18
WEA 01 Var5	28,31	28,43	24,15	24,44	29,74	30,75	30,67	29,65	26,31										22,21	20,63	37,95
Zb gesamt GB	39.99	40 10	36.83	37.28	46.06	30,73 45.17	45.28	43.62	30,77				3,02 or 20,83	7,07					37.63	41 10	45.11
3	0,00	2.5	00,00	21.00	20,01		24624	100					7,00	10,0					20,10	2.	

Seite 78 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

8.2 Lageplan der Immissionspunkte

Abbildung 3: Lage der IP 01 bis 04, Symbole und Beschriftungen aus /7/, Luftbild aus /8/

Abbildung 4: Lage der IP 05 bis 10, Symbole und Beschriftungen aus /7/, Luftbild aus /8/

Seite 79 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Abbildung 5: Lage der IP 11 bis 15, Symbole und Beschriftungen aus /7/, Luftbild aus /8/

Abbildung 6: Lage der IP 16, 17 und 22, Symbole und Beschriftungen aus /7/, Luftbild aus /8/

Seite 80 von 80 Gutachtliche Stellungnahme zur Schallimmissionsprognose für den Windpark Ebersdorf-Alfstedt, Revision 0, März 2022 Referenz-Nr. 2021-WND-SL-013-R0

Abbildung 7: Lage der IP 18 bis 20, Symbole und Beschriftungen aus /7/, Luftbild aus /8/

Abbildung 8: Lage des IP 21, Symbol und Beschriftung aus /7/, Luftbild aus /8/

Schallemission, Leistungskurven, Schubbeiwerte

Nordex N163/6.X

© Nordex Energy SE & Co. KG, Langenhorner Chaussee 600, D-22419 Hamburg, Germany Alle Rechte vorbehalten. Schutzvermerk ISO 16016 beachten.

Nordex N163/6.X - Schallemission Messvorschriften

Grundlage: Der angegebene Schallleistungspegel ist ein Erwartungswert im Sinne der

Statistik. Ergebnisse von Einzelvermessungen werden innerhalb des Ver-

trauensbereiches gemäß IEC 61400-14 [4] liegen.

Bemerkungen:

Nachweis gemäß: Messungen der Schallleistung sind an der Referenzposition nach Methode

1 der IEC 61400-11 [1] von einem nach ISO/IEC 17025 [3] für Schallemissionsmessungen an Windenergieanlagen akkreditierten Messinstitut durchzuführen. Die Bestimmung von Tonzuschlägen K_{TN} im Nahbereich der WEA aus diesen Messungen ist entsprechend der Technischen Richtlinie für

Windenergieanlagen [2] durchzuführen.

Tonhaltigkeiten: Die Geräusche im Nahbereich von Windenergieanlagen können Tonhaltig-

keiten aufweisen. Der spezifizierte Schallleistungspegel ist inklusive eventueller Tonzuschläge entsprechend Technischer Richtlinie für Windenergieanlagen [2] zu verstehen, wobei Tonzuschläge $K_{TN} \leq 2$ dB nicht berücksichtigt

werden.

[1] IEC 61400-11 ed. 2: Wind Turbine Generator Systems - Part 11: Acoustic

Noise Measurement Techniques; 2002-12

[2] Technische Richtlinie für Windenergieanlagen - Teil 1: Bestimmung der

Schallemissionswerte, Revision 18; FGW 2008-02

[3] ISO/IEC 17025: General requirements for the competence of testing and

calibration laboratories; 2017-11

[4] IEC 61400-14, Wind turbines - Part 14: Declaration of apparent sound

power level and tonality values, first edition, 2005-03

Abkürzungen:

L_{WA} ... A-bewerteter Schallleistungspegel

STE ... Serrations

Nordex N163/6.X – Schallemission, Nennleistung und verfügbare Nabenhöhen

Betriebs- weise	Nenn- leistung	Schallleistungs gesamten Betr	maler pegel über den iebsbereich der EA			erfügba ıbenhöh [m]		
weise	[kW]	L _{WA} [dB(A)]	L _{WA} (STE) [dB(A)]	118	138	148	159	164
Mode 1	6800	108,4	106,4	•	•	•	•	•
Mode 2	6690	108,0	106,0	•	•	•	•	•
Mode 3	6530	107,5	105,5	•	•	•	•	•
Mode 4	6370	107,0	105,0	•	-	•	•	•
Mode 5	6240	106,5	104,5	•	-	•	•	•
Mode 6	6080	106,0	104,0	•	-	-	_	•
Mode 7	5940	105,5	103,5	0	-	-	-	0
Mode 8	5820	105,0	103,0	0	-	-	_	0
Mode 9	5270	103,0	101,0	0	0	0	0	0
Mode 10	5180	102,5	100,5	0	0	0	0	0
Mode 11	4810	102,0	100,0	•	•	•	•	•
Mode 12	4520	101,5	99,5	•	•	•	•	•
Mode 13	4230	101,0	99,0	•	•	•	•	•
Mode 14	3870	100,5	98,5	•	•	•	•	•
Mode 15	3620	100,0	98,0	•	•	•	•	•
Mode 16	3380	99,5	97,5	•	•	•	•	•
Mode 17	3180	99,0	97,0	•	•	•	•	•

- Betriebsweise verfügbar
- Betriebsweise auf Anfrage
- Betriebsweise nicht verfügbar

Nordex N163/6.X - Verifikationsbedingungen Leistungskurve

Grundlage: Die vorliegenden Leistungskurvenwerte basieren auf aerodynamischen

Berechnungen der Nordex Energy SE & Co. KG.

Bestimmungen zur Leistungskurvenverifizierung:

Nachweis gemäß: IEC 61400-12-1

Anemometertyp: Thies First Class Advanced oder Vector A100

LiDAR-Typ: Windcube V2 oder ZX300
Leistungsmessung: auf der Niederspannungsseite

Luftdichtekorrektur: auf die in der Tabelle angegebene, nächstliegende Luftdichte

Filterung der Turbulenzintensität: $9\% \le TI \le 12 \times (0.75 \times v_H + 5.6)/v_H \%$

Filterung der Windscherung: $0 \le \alpha \le 0.3$

Messung und Bestimmung der Windscherung entsprechend den Anforderungen der MEASNET power performance measurement procedure,

Version 5, December - 2009, Kapitel 3.3 und 3.8

Filterung des Anströmwinkels: -2 $^{\circ}$ $\leq \psi \leq$ +2 $^{\circ}$ Filterung der Temperatur: $\vartheta \leq$ 25 $^{\circ}$ C

Schnee / Eis an den Blättern: Nein (bestimmt mit Hilfe von Eisdetektoren)

Filterung der Netzblindleistung: Leistungsfaktor = 1.0

Statussignal: Betriebsbereit in der entsprechenden Betriebsweise ohne Berücksichti-

gung der Abschalthysterese

Abkürzungen:

TI ... Turbulenzintensität α ... Hellmann-Exponent

 $\psi \dots \quad \text{Vertikalwinkel der Anströmung}$

 $\vartheta \dots$ Lufttemperatur

v_H ... Windgeschwindigkeit in Nabenhöhe

		für Naben	nhöhen 118	m, 138 m,	148 m, 159	m und 164	m		
Windgeschwin- digkeit			Leist	tung P _{el} [kV	V] bei Luftd	lichte $ ho$ [kg	/m³]		
v _H [m/s]	0,900	0,925	0,950	0,975	1,000	1,025	1,050	1,075	1,100
3,0	5	7	10	12	14	16	18	20	22
3,5	81	85	89	93	97	102	106	110	114
4,0	183	190	197	204	211	218	225	232	239
4,5	311	322	332	343	353	364	374	385	396
5,0	465	480	495	509	524	539	554	569	583
5,5	647	667	687	706	726	746	766	786	806
6,0	862	887	913	939	965	991	1016	1042	1068
6,5	1114	1146	1179	1212	1245	1277	1310	1343	1375
7,0	1407	1448	1488	1529	1570	1611	1652	1692	1733
7,5	1744	1795	1845	1895	1945	1995	2045	2095	2145
8,0	2129	2190	2250	2311	2372	2432	2493	2553	2614
8,5	2561	2633	2706	2778	2850	2923	2995	3067	3139
9,0	3019	3104	3189	3273	3358	3443	3528	3612	3697
9,5	3478	3575	3672	3770	3867	3964	4061	4158	4255
10,0	3924	4034	4143	4252	4362	4471	4580	4689	4797
10,5	4349	4470	4590	4711	4832	4952	5072	5194	5315
11,0	4742	4873	5005	5136	5267	5399	5531	5654	5772
11,5	5106	5247	5388	5530	5672	5798	5922	6027	6125
12,0	5451	5601	5752	5884	6014	6119	6222	6308	6387
12,5	5782	5924	6058	6170	6277	6364	6447	6514	6574
13,0	6064	6185	6298	6389	6477	6544	6609	6657	6700
13,5	6288	6389	6481	6553	6622	6670	6716	6747	6772
14,0	6464	6545	6617	6670	6719	6750	6778	6791	6797
14,5	6599	6660	6713	6747	6779	6790	6799	6800	6800
15,0	6696	6738	6773	6788	6800	6800	6800	6800	6800
15,5	6760	6783	6798	6800	6800	6800	6800	6800	6800
16,0	6793	6800	6800	6800	6800	6800	6800	6800	6800
16,5	6800	6800	6800	6800	6800	6800	6800	6800	6800
17,0	6800	6800	6800	6800	6800	6800	6800	6800	6800
17,5	6800	6800	6800	6800	6800	6800	6800	6800	6800
18,0	6800	6800	6800	6800	6800	6800	6800	6800	6800
18,5	6800	6800	6800	6800	6800	6800	6800	6800	6800
19,0	6800	6800	6800	6800	6800	6800	6800	6800	6800
19,5	6800	6800	6800	6800	6800	6800	6800	6800	6800
20,0	6800	6800	6800	6800	6800	6800	6800	6800	6800
20,5*	6603	6603	6603	6603	6603	6603	6603	6603	6603
21,0*	6331	6331	6331	6331	6331	6331	6331	6331	6331
21,5*	6059	6059	6059	6059	6059	6059	6059	6059	6059
22,0*	5794	5794	5794	5794	5794	5794	5794	5794	5794
22,5*	5528	5528	5528	5528	5528	5528	5528	5528	5528
23,0*	5270	5270	5270	5270	5270	5270	5270	5270	5270
23,5*	5012	5012	5012	5012	5012	5012	5012	5012	5012
24,0*	4760	4760	4760	4760	4760	4760	4760	4760	4760
24,5*	4508	4508	4508	4508	4508	4508	4508	4508	4508
25,0*	4264	4264	4264	4264	4264	4264	4264	4264	4264
25,5*	4019	4019	4019	4019	4019	4019	4019	4019	4019
26,0*	3774	3774	3774	3774	3774	3774	3774	3774	3774

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

	für N	labenhöhe	n 118 m, 13	38 m, 148 m	n, 159 m un	d 164 m		
Windgeschwin- digkeit			Leistung F	P _{el} [kW] bei	Luftdichte	$ ho$ [kg/m 3]		
ν _H [m/s]	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	24	26	28	30	32	34	37	39
3,5	118	122	127	131	135	139	143	147
4,0	246	253	260	267	274	281	288	295
4,5	406	417	427	438	448	459	469	480
5,0	598	613	628	643	657	672	687	702
5,5	826	845	865	885	905	925	944	964
6,0	1094	1119	1145	1171	1197	1222	1248	1274
6,5	1408	1441	1473	1506	1539	1571	1604	1637
7,0	1774	1814	1855	1896	1937	1977	2018	2059
7,5	2195	2245	2294	2344	2394	2444	2494	2544
8,0	2674	2734	2795	2855	2916	2976	3036	3096
8,5	3212	3284	3356	3426	3495	3562	3627	3690
9,0	3781	3866	3950	4026	4096	4164	4230	4292
9,5	4352	4449	4545	4624	4693	4758	4820	4878
10,0	4906	5016	5126	5207	5270	5328	5382	5433
10,5	5434	5545	5656	5732	5781	5824	5864	5900
11,0	5883	5974	6066	6125	6160	6190	6218	6243
11,5	6216	6290	6364	6409	6433	6453	6472	6489
12,0	6460	6516	6572	6605	6621	6633	6644	6655
12,5	6629	6668	6707	6729	6737	6743	6749	6754
13,0	6737	6758	6780	6791	6794	6795	6795	6796
13,5	6791	6795	6799	6800	6800	6800	6800	6800
14,0	6800	6800	6800	6800	6800	6800	6800	6800
14,5	6800	6800	6800	6800	6800	6800	6800	6800
15,0	6800	6800	6800	6800	6800	6800	6800	6800
15,5	6800	6800	6800	6800	6800	6800	6800	6800
16,0	6800	6800	6800	6800	6800	6800	6800	6800
16,5	6800	6800	6800	6800	6800	6800	6800	6800
17,0	6800	6800	6800	6800	6800	6800	6800	6800
17,5	6800	6800	6800	6800	6800	6800	6800	6800
18,0	6800	6800	6800	6800	6800	6800	6800	6800
18,5	6800	6800	6800	6800	6800	6800	6800	6800
19,0	6800	6800	6800	6800	6800	6800	6800	6800
19,5	6800	6800	6800	6800	6800	6800	6800	6800
20,0	6800	6800	6800	6800	6800	6800	6800	6800
20,5*	6603	6603	6603	6603	6603	6603	6603	6603
21,0*	6331	6331	6331	6331	6331	6331	6331	6331
21,5*	6059	6059	6059	6059	6059	6059	6059	6059
22,0*	5794	5794	5794	5794	5794	5794	5794	5794
22,5*	5528	5528	5528	5528	5528	5528	5528	5528
23,0*	5270	5270	5270	5270	5270	5270	5270	5270
23,5*	5012	5012	5012	5012	5012	5012	5012	5012
24,0*	4760	4760	4760	4760	4760	4760	4760	4760
24,5*	4508	4508	4508	4508	4508	4508	4508	4508
25,0*	4264	4264	4264	4264	4264	4264	4264	4264
25,5*	4019	4019	4019	4019	4019	4019	4019	4019
26,0*	3774	3774	3774	3774	3774	3774	3774	3774

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

		für Naber	nhöhen 118	m, 138 m,	148 m, 159	m und 164	m		
Windgeschwin- digkeit			Leist	tung P _{el} [kV	V] bei Luftd	lichte $ ho$ [kg	/m³]		
v _н [m/s]	0,900	0,925	0,950	0,975	1,000	1,025	1,050	1,075	1,100
3,0	5	7	10	12	14	16	18	20	22
3,5	81	85	89	93	97	102	106	110	114
4,0	183	190	197	204	211	218	225	232	239
4,5	311	322	332	343	353	364	374	385	396
5,0	465	480	495	509	524	539	554	569	583
5,5	647	667	687	706	726	746	766	786	806
6,0	862	887	913	939	965	991	1016	1042	1068
6,5	1114	1146	1179	1212	1245	1277	1310	1343	1375
7,0	1407	1448	1488	1529	1570	1611	1652	1692	1733
7,5	1744	1794	1845	1895	1945	1995	2045	2095	2145
8,0	2129	2190	2251	2311	2372	2432	2493	2553	2614
8,5	2557	2630	2702	2774	2846	2919	2991	3063	3135
9,0	3003	3088	3172	3257	3341	3425	3509	3594	3678
9,5	3445	3542	3638	3735	3831	3927	4024	4120	4216
10,0	3872	3980	4088	4196	4304	4412	4520	4627	4735
10,5	4275	4394	4512	4631	4750	4868	4987	5105	522
11,0	4645	4774	4903	5032	5160	5289	5419	5544	5660
11,5	4990	5129	5267	5405	5544	5674	5796	5909	600!
	5319	5466	5614	5751	5877	5991	6092	6185	6263
12,0	5637	5785	5916	6035	6140	6234	6316	6391	6450
12,5 13,0	5918	6046	6156	6255	6341	6416	6479	6535	657
13,5	6145	6252	6342	6421	6488	6545	6589	6628	665
14,0	6324	6412	6482	6543	6591	6629	6657	6678	668
14,5	6464	6532	6584	6626	6657	6677	6686	6690	6690
15,0	6566	6616	6650	6673	6685	6690	6690	6690	669
15,5	6636	6667	6682	6690	6690	6690	6690	6690	669
16,0	6676	6689	6690	6690	6690	6690	6690	6690	669
16,5	6689	6690	6690	6690	6690	6690	6690	6690	6690
17,0	6690	6690	6690	6690	6690	6690	6690	6690	669
17,5	6690	6690	6690	6690	6690	6690	6690	6690	669
18,0	6690	6690	6690	6690	6690	6690	6690	6690	669
18,5	6690	6690	6690	6690	6690	6690	6690	6690	669
19,0	6690	6690	6690	6690	6690	6690	6690	6690	669
19,5	6690	6690	6690	6690	6690	6690	6690	6690	6690
20,0	6690	6690	6690	6690	6690	6690	6690	6690	6690
20,5*	6603	6603	6603	6603	6603	6603	6603	6603	6603
21,0*	6331	6331	6331	6331	6331	6331	6331	6331	633
21,5*	6059	6059	6059	6059	6059	6059	6059	6059	6059
22,0*	5794	5794	5794	5794	5794	5794	5794	5794	579
22,5*	5528	5528	5528	5528	5528	5528	5528	5528	5528
23,0*	5270	5270	5270	5270	5270	5270	5270	5270	5270
23,5*	5012	5012	5012	5012	5012	5012	5012	5012	5012
24,0*	4760	4760	4760	4760	4760	4760	4760	4760	4760
24,5*	4508	4508	4508	4508	4508	4508	4508	4508	4508
25,0*	4264	4264	4264	4264	4264	4264	4264	4264	426
25,5*	4019	4019	4019	4019	4019	4019	4019	4019	4019
26,0*	3774	3774	3774	3774	3774	3774	3774	3774	37

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

	für N	labenhöhe	n 118 m, 13	38 m, 148 m	n, 159 m un	d 164 m		
Windgeschwin- digkeit			Leistung F	P _{el} [kW] bei	Luftdichte	$ ho$ [kg/m 3]		
ν _H [m/s]	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	24	26	28	30	32	34	37	39
3,5	118	122	127	131	135	139	143	147
4,0	246	253	260	267	274	281	288	295
4,5	406	417	427	438	448	459	469	480
5,0	598	613	628	643	657	672	687	702
5,5	826	845	865	885	905	925	944	964
6,0	1094	1119	1145	1171	1197	1222	1248	1274
6,5	1408	1441	1473	1506	1539	1571	1604	1637
7,0	1774	1814	1855	1896	1937	1977	2018	2059
7,5	2195	2245	2294	2344	2394	2444	2494	2544
8,0	2674	2734	2795	2855	2916	2976	3036	3096
8,5	3207	3279	3351	3423	3494	3561	3627	3691
9,0	3762	3846	3930	4014	4095	4164	4230	4293
9,5	4312	4408	4503	4599	4692	4758	4821	4880
10,0	4842	4950	5058	5166	5263	5322	5378	5430
10,5	5344	5455	5564	5673	5752	5797	5838	5875
11,0	5776	5870	5960	6049	6113	6144	6172	6199
11,5	6100	6176	6249	6321	6368	6389	6409	6427
12,0	6340	6398	6453	6508	6540	6553	6565	6576
12,5	6509	6550	6588	6625	6642	6648	6654	6659
13,0	6618	6642	6663	6684	6686	6687	6687	6688
13,5	6677	6684	6688	6690	6690	6690	6690	6690
14,0	6690	6690	6690	6690	6690	6690	6690	6690
14,5	6690	6690	6690	6690	6690	6690	6690	6690
15,0	6690	6690	6690	6690	6690	6690	6690	6690
15,5	6690	6690	6690	6690	6690	6690	6690	6690
16,0	6690	6690	6690	6690	6690	6690	6690	6690
16,5	6690	6690	6690	6690	6690	6690	6690	6690
17,0	6690	6690	6690	6690	6690	6690	6690	6690
17,5	6690	6690	6690	6690	6690	6690	6690	6690
18,0	6690	6690	6690	6690	6690	6690	6690	6690
18,5	6690	6690	6690	6690	6690	6690	6690	6690
19,0	6690	6690	6690	6690	6690	6690	6690	6690
19,5	6690	6690	6690	6690	6690	6690	6690	6690
20,0	6690	6690	6690	6690	6690	6690	6690	6690
20,5*	6603	6603	6603	6603	6603	6603	6603	6603
21,0*	6331	6331	6331	6331	6331	6331	6331	6331
21,5*	6059	6059	6059	6059	6059	6059	6059	6059
22,0*	5794	5794	5794	5794	5794	5794	5794	5794
22,5*	5528	5528	5528	5528	5528	5528	5528	5528
23,0*	5270	5270	5270	5270	5270	5270	5270	5270
23,5*	5012	5012	5012	5012	5012	5012	5012	5012
24,0*	4760	4760	4760	4760	4760	4760	4760	4760
24,5*	4508	4508	4508	4508	4508	4508	4508	4508
25,0*	4264	4264	4264	4264	4264	4264	4264	4264
25,5*	4019	4019	4019	4019	4019	4019	4019	4019
26,0*	3774	3774	3774	3774	3774	3774	3774	3774

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

		für Naben	ıhöhen 118	m, 138 m,	148 m, 159	m und 164	m		
Windgeschwin- digkeit			Leist	tung P _{el} [kV	V] bei Luftd	lichte $ ho$ [kg	/m³]		
v _H [m/s]	0,900	0,925	0,950	0,975	1,000	1,025	1,050	1,075	1,100
3,0	5	7	10	12	14	16	18	20	22
3,5	81	85	89	93	97	102	106	110	114
4,0	183	190	197	204	211	218	225	232	239
4,5	311	322	332	343	353	364	374	385	396
5,0	465	480	495	509	524	539	554	569	583
5,5	647	667	687	706	726	746	766	786	806
6,0	862	887	913	939	965	991	1016	1042	1068
6,5	1114	1146	1179	1212	1245	1277	1310	1343	1375
7,0	1407	1448	1488	1529	1570	1611	1652	1692	1733
7,5	1744	1794	1845	1895	1945	1995	2045	2095	2145
8,0	2128	2189	2250	2310	2371	2431	2492	2552	2613
8,5	2546	2618	2690	2762	2834	2906	2978	3050	3122
9,0	2972	3055	3139	3223	3306	3389	3473	3556	3640
9,5	3388	3483	3577	3672	3767	3862	3956	4051	4146
10,0	3784	3890	3996	4101	4207	4312	4417	4523	4628
10,5	4152	4268	4384	4499	4615	4730	4845	4960	5075
11,0	4492	4617	4742	4866	4991	5115	5240	5366	5483
11,5	4812	4945	5079	5211	5345	5479	5600	5717	5820
12,0	5119	5261	5403	5544	5670	5792	5894	5990	6074
12,5	5419	5567	5701	5827	5933	6035	6118	6197	6262
13,0	5700	5830	5944	6050	6137	6219	6285	6345	6394
13,5	5931	6041	6136	6222	6291	6355	6403	6446	6477
14,0	6118	6208	6284	6352	6403	6449	6480	6506	6520
14,5	6265	6337	6394	6444	6477	6507	6520	6528	6530
15,0	6376	6430	6469	6502	6518	6529	6530	6530	6530
15,5	6455	6491	6513	6528	6530	6530	6530	6530	6530
16,0	6505	6523	6530	6530	6530	6530	6530	6530	6530
16,5	6528	6530	6530	6530	6530	6530	6530	6530	6530
17,0	6530	6530	6530	6530	6530	6530	6530	6530	6530
17,5	6530	6530	6530	6530	6530	6530	6530	6530	6530
18,0	6530	6530	6530	6530	6530	6530	6530	6530	6530
18,5	6530	6530	6530	6530	6530	6530	6530	6530	6530
19,0	6530	6530	6530	6530	6530	6530	6530	6530	6530
19,5	6530	6530	6530	6530	6530	6530	6530	6530	6530
20,0	6530	6530	6530	6530	6530	6530	6530	6530	6530
20,5*	6530	6530	6530	6530	6530	6530	6530	6530	6530
21,0*	6331	6331	6331	6331	6331	6331	6331	6331	6331
21,5*	6059	6059	6059	6059	6059	6059	6059	6059	6059
22,0*	5794	5794	5794	5794	5794	5794	5794	5794	5794
22,5*	5528	5528	5528	5528	5528	5528	5528	5528	5528
23,0*	5270	5270	5270	5270	5270	5270	5270	5270	5270
23,5*	5012	5012	5012	5012	5012	5012	5012	5012	5012
24,0*	4760	4760	4760	4760	4760	4760	4760	4760	4760
24,5*	4508	4508	4508	4508	4508	4508	4508	4508	4508
25,0*	4264	4264	4264	4264	4264	4264	4264	4264	4264
25,5*	4019	4019	4019	4019	4019	4019	4019	4019	4019
26,0*	3774	3774	3774	3774	3774	3774	3774	3774	3774

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

	für N	Nabenhöhe	n 118 m, 13	38 m, 148 m	n, 159 m un	d 164 m		
Windgeschwin- digkeit			Leistung F	P _{el} [kW] bei	Luftdichte	$ ho$ [kg/m 3]		
v _H [m/s]	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	24	26	28	30	32	34	37	39
3,5	118	122	127	131	135	139	143	147
4,0	246	253	260	267	274	281	288	295
4,5	406	417	427	438	448	459	469	480
5,0	598	613	628	643	657	672	687	702
5,5	826	845	865	885	905	925	944	964
6,0	1094	1119	1145	1171	1197	1222	1248	1274
6,5	1408	1441	1473	1506	1539	1571	1604	1637
7,0	1774	1814	1855	1896	1937	1977	2018	2059
7,5	2195	2244	2294	2344	2394	2444	2494	2544
8,0	2673	2733	2794	2854	2914	2975	3035	3095
8,5	3193	3265	3337	3409	3480	3552	3623	3690
9,0	3723	3806	3889	3972	4055	4138	4221	4292
9,5	4240	4334	4429	4523	4617	4712	4807	4880
10,0	4733	4838	4943	5049	5153	5252	5351	5422
10,5	5192	5306	5413	5519	5617	5699	5781	5835
11,0	5595	5704	5792	5879	5959	6024	6090	6131
11,5	5912	6001	6072	6142	6205	6254	6303	6333
12,0	6149	6221	6274	6327	6373	6406	6440	6459
12,5	6319	6374	6410	6447	6477	6494	6511	6520
13,0	6433	6471	6491	6511	6525	6527	6529	6530
13,5	6501	6521	6525	6529	6530	6530	6530	6530
14,0	6527	6530	6530	6530	6530	6530	6530	6530
14,5	6530	6530	6530	6530	6530	6530	6530	6530
15,0	6530	6530	6530	6530	6530	6530	6530	6530
15,5	6530	6530	6530	6530	6530	6530	6530	6530
16,0	6530	6530	6530	6530	6530	6530	6530	6530
16,5	6530	6530	6530	6530	6530	6530	6530	6530
17,0	6530	6530	6530	6530	6530	6530	6530	6530
17,5	6530	6530	6530	6530	6530	6530	6530	6530
18,0	6530	6530	6530	6530	6530	6530	6530	6530
18,5	6530	6530	6530	6530	6530	6530	6530	6530
19,0	6530	6530	6530	6530	6530	6530	6530	6530
19,5	6530	6530	6530	6530	6530	6530	6530	6530
20,0	6530	6530	6530	6530	6530	6530	6530	6530
20,5*	6530	6530	6530	6530	6530	6530	6530	6530
21,0*	6331	6331	6331	6331	6331	6331	6331	6331
21,5*	6059	6059	6059	6059	6059	6059	6059	6059
22,0*	5794	5794	5794	5794	5794	5794	5794	5794
22,5*	5528	5528	5528	5528	5528	5528	5528	5528
23,0*	5270	5270	5270	5270	5270	5270	5270	5270
23,5*	5012	5012	5012	5012	5012	5012	5012	5012
24,0*	4760	4760	4760	4760	4760	4760	4760	4760
24,5*	4508	4508	4508	4508	4508	4508	4508	4508
25,0*	4264	4264	4264	4264	4264	4264	4264	4264
25,5*	4019	4019	4019	4019	4019	4019	4019	4019
26,0*	3774	3774	3774	3774	3774	3774	3774	3774

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

					m, 159 m ι fügbar für 1				
Windgeschwin- digkeit			Leist	tung P _{el} [kV	V] bei Luftd	lichte $ ho$ [kg	/m³]		
v _H [m/s]	0,900	0,925	0,950	0,975	1,000	1,025	1,050	1,075	1,100
3,0	5	7	10	12	14	16	18	20	22
3,5	81	85	89	93	97	102	106	110	114
4,0	183	190	197	204	211	218	225	232	239
4,5	311	322	332	343	353	364	374	385	396
5,0	465	480	495	509	524	539	554	569	583
5,5	647	667	687	706	726	746	766	786	806
6,0	862	887	913	939	965	991	1016	1042	1068
6,5	1114	1146	1179	1212	1245	1277	1310	1343	1375
7,0	1407	1448	1488	1529	1570	1611	1652	1692	1733
7,5	1744	1795	1845	1895	1945	1995	2045	2095	2145
8,0	2127	2187	2248	2308	2369	2429	2490	2550	2610
8,5	2533	2605	2676	2748	2819	2891	2962	3034	3105
9,0	2939	3022	3105	3187	3270	3352	3435	3517	3600
9,5	3332	3425	3519	3612	3705	3799	3892	3985	4078
10,0	3702	3806	3909	4013	4116	4219	4322	4426	4529
10,5	4043	4156	4268	4381	4493	4606	4718	4830	4942
11,0	4359	4481	4602	4723	4844	4964	5085	5207	5327
11,5	4660	4790	4919	5048	5177	5307	5431	5544	5654
12,0	4951	5088	5225	5363	5492	5610	5719	5813	5903
12,5	5236	5381	5518	5640	5752	5851	5940	6017	6090
13,0	5508	5641	5760	5862	5956	6035	6107	6166	6222
13,5	5741	5853	5953	6037	6112	6174	6229	6270	6309
14,0	5929	6023	6104	6170	6227	6272	6310	6336	6358
14,5	6080	6155	6219	6267	6307	6335	6356	6365	6370
15,0	6195	6253	6299	6330	6353	6364	6370	6370	6370
15,5	6279	6319	6348	6362	6370	6370	6370	6370	6370
16,0	6334	6357	6369	6370	6370	6370	6370	6370	6370
16,5	6362	6369	6370	6370	6370	6370	6370	6370	6370
17,0	6370	6370	6370	6370	6370	6370	6370	6370	6370
17,5	6370	6370	6370	6370	6370	6370	6370	6370	6370
18,0	6370	6370	6370	6370	6370	6370	6370	6370	6370
18,5	6370	6370	6370	6370	6370	6370	6370	6370	6370
19,0	6370	6370	6370	6370	6370	6370	6370	6370	6370
19,5	6370	6370	6370	6370	6370	6370	6370	6370	6370
20,0	6370	6370	6370	6370	6370	6370	6370	6370	6370
20,5*	6370	6370	6370	6370	6370	6370	6370	6370	6370
21,0*	6331	6331	6331	6331	6331	6331	6331	6331	6331
21,5*	6059	6059	6059	6059	6059	6059	6059	6059	6059
22,0*	5794	5794	5794	5794	5794	5794	5794	5794	5794
22,5*	5528	5528	5528	5528	5528	5528	5528	5528	5528
23,0*	5270	5270	5270	5270	5270	5270	5270	5270	5270
23,5*	5012	5012	5012	5012	5012	5012	5012	5012	5012
24,0*	4760	4760	4760	4760	4760	4760	4760	4760	4760
24,5*	4508	4508	4508	4508	4508	4508	4508	4508	4508
25,0*	4264	4264	4264	4264	4264	4264	4264	4264	4264
25,5*	4019	4019	4019	4019	4019	4019	4019	4019	4019
26,0*	3774	3774	3774	3774	3774	3774	3774	3774	3774

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

	f		öhen 118 m sweise nich					
Windgeschwin- digkeit			Leistung F	P _{el} [kW] bei	Luftdichte	$ ho$ [kg/m 3]		
v _H [m/s]	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	24	26	28	30	32	34	37	39
3,5	118	122	127	131	135	139	143	147
4,0	246	253	260	267	274	281	288	295
4,5	406	417	427	438	448	459	469	480
5,0	598	613	628	643	657	672	687	702
5,5	826	845	865	885	905	925	944	964
6,0	1094	1119	1145	1171	1197	1222	1248	1274
6,5	1408	1441	1473	1506	1539	1571	1604	1637
7,0	1774	1814	1855	1896	1937	1977	2018	2058
7,5	2195	2245	2294	2344	2394	2444	2494	2544
8,0	2671	2731	2791	2852	2912	2972	3032	3093
8,5	3177	3248	3319	3391	3462	3533	3604	3676
9,0	3682	3765	3847	3929	4011	4093	4176	4257
9,5	4171	4264	4357	4449	4542	4635	4728	4822
10,0	4631	4734	4837	4941	5044	5142	5239	5336
10,5	5055	5169	5275	5379	5482	5564	5644	5724
11,0	5436	5545	5638	5723	5807	5873	5937	6001
11,5	5744	5833	5908	5977	6045	6094	6142	6190
12,0	5976	6048	6106	6157	6209	6243	6275	6307
12,5	6145	6200	6241	6277	6312	6330	6347	6363
13,0	6260	6299	6324	6344	6363	6367	6369	6370
13,5	6332	6354	6364	6367	6370	6370	6370	6370
14,0	6364	6370	6370	6370	6370	6370	6370	6370
14,5	6370	6370	6370	6370	6370	6370	6370	6370
15,0	6370	6370	6370	6370	6370	6370	6370	6370
15,5	6370	6370	6370	6370	6370	6370	6370	6370
16,0	6370	6370	6370	6370	6370	6370	6370	6370
16,5	6370	6370	6370	6370	6370	6370	6370	6370
17,0	6370	6370	6370	6370	6370	6370	6370	6370
17,5	6370	6370	6370	6370	6370	6370	6370	6370
18,0	6370	6370	6370	6370	6370	6370	6370	6370
18,5	6370	6370	6370	6370	6370	6370	6370	6370
19,0	6370	6370	6370	6370	6370	6370	6370	6370
19,5	6370	6370	6370	6370	6370	6370	6370	6370
20,0	6370	6370	6370	6370	6370	6370	6370	6370
20,5*	6370	6370	6370	6370	6370	6370	6370	6370
21,0*	6331	6331	6331	6331	6331	6331	6331	6331
21,5*	6059	6059	6059	6059	6059	6059	6059	6059
22,0*	5794	5794	5794	5794	5794	5794	5794	5794
22,5*	5528	5528	5528	5528	5528	5528	5528	5528
23,0*	5270	5270	5270	5270	5270	5270	5270	5270
23,5*	5012	5012	5012	5012	5012	5012	5012	5012
24,0*	4760	4760	4760	4760	4760	4760	4760	4760
24,5*	4508	4508	4508	4508	4508	4508	4508	4508
25,0*	4264	4264	4264	4264	4264	4264	4264	4264
25,5*	4019	4019	4019	4019	4019	4019	4019	4019
26,0*	3774	3774	3774	3774	3774	3774	3774	3774

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

					m, 159 m u fügbar für 1				
Windgeschwin- digkeit			Leist	tung P _{el} [kV	V] bei Luftd	ichte $ ho$ [kg	/m³]		
ν _H [m/s]	0,900	0,925	0,950	0,975	1,000	1,025	1,050	1,075	1,100
3,0	5	7	10	12	14	16	18	20	22
3,5	81	85	89	93	97	102	106	110	114
4,0	183	190	197	204	211	218	225	232	239
4,5	311	322	332	343	353	364	374	385	396
5,0	465	480	495	509	524	539	554	569	583
5,5	647	667	687	706	726	746	766	786	806
6,0	862	887	913	939	965	991	1016	1042	1068
6,5	1114	1146	1179	1212	1245	1277	1310	1343	1375
7,0	1407	1448	1488	1529	1570	1611	1651	1692	1733
7,5	1744	1795	1845	1895	1945	1995	2045	2095	2145
8,0	2121	2181	2242	2302	2362	2423	2483	2543	2604
8,5	2512	2583	2654	2725	2796	2867	2938	3009	3080
9,0	2897	2978	3060	3141	3223	3304	3386	3467	3548
9,5	3265	3356	3448	3539	3631	3722	3814	3905	3996
10,0	3607	3707	3808	3909	4010	4110	4211	4311	4412
10,5	3921	4031	4140	4249	4358	4467	4577	4685	4794
11,0	4216	4333	4450	4568	4685	4802	4918	5036	5154
11,5	4499	4624	4748	4873	4998	5123	5248	5364	5473
12,0	4774	4906	5039	5171	5303	5422	5536	5634	5725
12,5	5042	5182	5321	5449	5566	5667	5762	5842	5916
13,0	5299	5443	5568	5678	5776	5859	5936	6000	6056
13,5	5538	5663	5768	5860	5941	6006	6066	6113	6153
14,0	5735	5840	5928	6002	6065	6114	6157	6188	6213
14,5	5894	5981	6051	6108	6154	6187	6214	6229	6237
15,0	6018	6088	6140	6181	6211	6227	6238	6240	6240
15,5	6111	6163	6199	6223	6237	6240	6240	6240	6240
16,0	6175	6211	6231	6240	6240	6240	6240	6240	6240
16,5	6216	6235	6240	6240	6240	6240	6240	6240	6240
17,0	6237	6240	6240	6240	6240	6240	6240	6240	6240
17,5	6240	6240	6240	6240	6240	6240	6240	6240	6240
18,0	6240	6240	6240	6240	6240	6240	6240	6240	6240
18,5	6240	6240	6240	6240	6240	6240	6240	6240	6240
19,0	6240	6240	6240	6240	6240	6240	6240	6240	6240
19,5	6240	6240	6240	6240	6240	6240	6240	6240	6240
20,0	6240	6240	6240	6240	6240	6240	6240	6240	6240
20,5*	6240	6240	6240	6240	6240	6240	6240	6240	6240
21,0*	6240	6240	6240	6240	6240	6240	6240	6240	6240
21,5*	6059	6059	6059	6059	6059	6059	6059	6059	6059
22,0*	5794	5794	5794	5794	5794	5794	5794	5794	5794
22,5*	5528	5528	5528	5528	5528	5528	5528	5528	5528
23,0*	5270	5270	5270	5270	5270	5270	5270	5270	5270
23,5*	5012	5012	5012	5012	5012	5012	5012	5012	5012
24,0*	4760	4760	4760	4760	4760	4760	4760	4760	4760
24,5*	4508	4508	4508	4508	4508	4508	4508	4508	4508
25,0*	4264	4264	4264	4264	4264	4264	4264	4264	4264
25,5*	4019	4019	4019	4019	4019	4019	4019	4019	4019
26,0*	3774	3774	3774	3774	3774	3774	3774	3774	3774

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

	f		öhen 118 m osweise nich					
Windgeschwin- digkeit			Leistung F	e _l [kW] bei	Luftdichte	$ ho$ [kg/m 3]		
v _H [m/s]	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	24	26	28	30	32	34	37	39
3,5	118	122	127	131	135	139	143	147
4,0	246	253	260	267	274	281	288	295
4,5	406	417	427	438	448	459	469	480
5,0	598	613	628	643	657	672	687	702
5,5	826	845	865	885	905	925	944	964
6,0	1094	1119	1145	1171	1197	1222	1248	1274
6,5	1408	1441	1473	1506	1539	1571	1604	1637
7,0	1774	1814	1855	1896	1936	1977	2018	2058
7,5	2195	2245	2294	2344	2394	2444	2494	2544
8,0	2664	2724	2784	2844	2904	2965	3025	3085
8,5	3151	3221	3292	3363	3434	3504	3575	3645
9,0	3629	3711	3792	3873	3954	4035	4116	4197
9,5	4087	4178	4270	4360	4451	4542	4634	4725
10,0	4512	4612	4712	4813	4914	5014	5109	5204
10,5	4903	5013	5123	5224	5325	5422	5500	5578
11,0	5267	5372	5478	5562	5644	5724	5786	5848
11,5	5574	5660	5747	5815	5881	5944	5991	6037
12,0	5807	5877	5947	5999	6048	6096	6127	6158
12,5	5981	6034	6088	6124	6158	6190	6205	6221
13,0	6105	6142	6179	6200	6219	6235	6237	6239
13,5	6186	6208	6230	6235	6238	6240	6240	6240
14,0	6230	6236	6240	6240	6240	6240	6240	6240
14,5	6240	6240	6240	6240	6240	6240	6240	6240
15,0	6240	6240	6240	6240	6240	6240	6240	6240
15,5	6240	6240	6240	6240	6240	6240	6240	6240
16,0	6240	6240	6240	6240	6240	6240	6240	6240
16,5	6240	6240	6240	6240	6240	6240	6240	6240
17,0	6240	6240	6240	6240	6240	6240	6240	6240
17,5	6240	6240	6240	6240	6240	6240	6240	6240
18,0	6240	6240	6240	6240	6240	6240	6240	6240
18,5	6240	6240	6240	6240	6240	6240	6240	6240
19,0	6240	6240	6240	6240	6240	6240	6240	6240
19,5	6240	6240	6240	6240	6240	6240	6240	6240
20,0	6240	6240	6240	6240	6240	6240	6240	6240
20,5*	6240	6240	6240	6240	6240	6240	6240	6240
21,0*	6240	6240	6240	6240	6240	6240	6240	6240
21,5*	6059	6059	6059	6059	6059	6059	6059	6059
22,0*	5794	5794	5794	5794	5794	5794	5794	5794
22,5*	5528	5528	5528	5528	5528	5528	5528	5528
23,0*	5270	5270	5270	5270	5270	5270	5270	5270
23,5*	5012	5012	5012	5012	5012	5012	5012	5012
24,0*	4760	4760	4760	4760	4760	4760	4760	4760
24,5*	4508	4508	4508	4508	4508	4508	4508	4508
25,0*	4264	4264	4264	4264	4264	4264	4264	4264
25,5*	4019	4019	4019	4019	4019	4019	4019	4019
26,0*	3774	3774	3774	3774	3774	3774	3774	3774

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

		(Betriebsw			3 m und 164 r 138 m, 14		9 m)		
Windgeschwin- digkeit			Leis	tung P _{el} [k\	N] bei Lufto	lichte $ ho$ [kg	/m³]		
[m./a]	0.000	0.925	0.050	0.075	1 000	1 025	1.050	1 075	1 100

	((Betriebswe	eise nicht ve	erfügbar füi	138 m, 148	8 m und 15	9 m)		
Windgeschwin- digkeit				tung P _{el} [kV					
v _H [m/s]	0,900	0,925	0,950	0,975	1,000	1,025	1,050	1,075	1,100
3,0	5	7	10	12	14	16	18	20	22
3,5	81	85	89	93	97	102	106	110	114
4,0	183	190	197	204	211	218	225	232	239
4,5	311	322	332	343	353	364	374	385	396
5,0	465	480	495	509	524	539	554	569	583
5,5	647	667	687	706	726	746	766	786	806
6,0	862	887	913	939	965	991	1016	1042	1068
6,5	1114	1146	1179	1212	1245	1277	1310	1343	1375
7,0	1407	1448	1488	1529	1570	1611	1651	1692	1733
7,5	1744	1794	1844	1894	1944	1994	2044	2094	2144
8,0	2110	2170	2230	2290	2350	2410	2470	2530	2590
8,5	2480	2550	2620	2691	2761	2831	2901	2971	3041
9,0	2839	2919	2999	3079	3159	3239	3319	3398	3478
9,5	3178	3267	3356	3445	3534	3623	3712	3801	3890
10,0	3488	3586	3683	3781	3878	3976	4073	4170	4268
10,5	3775	3881	3986	4092	4197	4302	4407	4512	4617
11,0	4048	4161	4274	4387	4499	4612	4724	4836	4949
11,5	4312	4432	4552	4672	4792	4911	5032	5152	5259
12,0	4571	4698	4825	4952	5079	5205	5315	5424	5513
12,5	4819	4953	5087	5219	5342	5455	5546	5637	5709
13,0	5058	5198	5335	5453	5559	5653	5728	5801	5858
13,5	5288	5424	5543	5643	5732	5809	5866	5924	5965
14,0	5493	5610	5711	5794	5865	5925	5967	6009	6034
14,5	5660	5760	5843	5909	5964	6008	6035	6061	6071
15,0	5793	5875	5942	5991	6030	6059	6070	6080	6080
15,5	5895	5960	6010	6044	6067	6080	6080	6080	6080
16,0	5970	6019	6053	6071	6080	6080	6080	6080	6080
16,5	6025	6057	6076	6079	6080	6080	6080	6080	6080
17,0	6060	6077	6080	6080	6080	6080	6080	6080	6080
17,5	6077	6080	6080	6080	6080	6080	6080	6080	6080
18,0	6080	6080	6080	6080	6080	6080	6080	6080	6080
18,5	6080	6080	6080	6080	6080	6080	6080	6080	6080
19,0	6080 6080	6080 6080	6080 6080	6080 6080	6080 6080	6080 6080	6080 6080	6080 6080	6080 6080
19,5 20,0	6080	6080	6080	6080	6080	6080	6080	6080	6080
20,5*	6080	6080	6080	6080	6080	6080	6080	6080	6080
21,0*	6080	6080	6080	6080	6080	6080	6080	6080	6080
21,5*	6059	6059	6059	6059	6059	6059	6059	6059	6059
22,0*	5794	5794	5794	5794	5794	5794	5794	5794	5794
22,5*	5528	5528	5528	5528	5528	5528	5528	5528	5528
23,0*	5270	5270	5270	5270	5270	5270	5270	5270	5270
23,5*	5012	5012	5012	5012	5012	5012	5012	5012	5012
24,0*	4760	4760	4760	4760	4760	4760	4760	4760	4760
24,5*	4508	4508	4508	4508	4508	4508	4508	4508	4508
25,0*	4264	4264	4264	4264	4264	4264	4264	4264	4264
25,5*	4019	4019	4019	4019	4019	4019	4019	4019	4019
26,0*	3774	3774	3774	3774	3774	3774	3774	3774	3774

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

22,5*

23,0*

23,5*

24,0*

24,5*

25,0*

25,5*

26,0*

Nordex N163/6.X - Leistungskurven - Mode 6

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

(Betrie	ebsweise ni	cnt vertuge	ar fur 138 r	m, 148 m ur	id 159 m; a	uf Anfrage	tur 118 m u	ina 164 m)	
Windgeschwin- digkeit				tung P _{el} [kV	V] bei Luftd	lichte $ ho$ [kg	/m³]		
v _H [m/s]	0,900	0,925	0,950	0,975	1,000	1,025	1,050	1,075	1,100
3,0	5	7	10	12	14	16	18	20	22
3,5	81	85	89	93	97	102	106	110	114
4,0	183	190	197	204	211	218	225	232	239
4,5	311	322	332	343	353	364	374	385	396
5,0	465	480	495	509	524	539	554	569	583
5,5	647	667	687	706	726	746	766	786	806
6,0	862	887	913	939	965	991	1016	1042	1068
6,5	1114	1146	1179	1212	1244	1277	1310	1343	1375
7,0	1407	1448	1489	1529	1570	1611	1652	1692	1733
7,5	1741	1791	1841	1891	1941	1991	2040	2090	2140
8,0	2094	2154	2214	2273	2333	2392	2452	2512	2571
8,5	2445	2514	2583	2652	2722	2791	2860	2929	2998
9,0	2780	2859	2937	3016	3094	3172	3250	3329	3407
9,5	3092	3179	3265	3352	3439	3526	3612	3699	3786
10,0	3377	3471	3566	3661	3755	3850	3944	4038	4132
10,5	3644	3746	3847	3949	4051	4153	4254	4356	4457
11,0	3900	4008	4117	4226	4334	4443	4552	4660	4768
11,5	4149	4265	4380	4496	4611	4726	4841	4957	5070
12,0	4390	4512	4634	4756	4878	5000	5122	5227	5328
12,5	4622	4750	4878	5006	5134	5251	5358	5446	5530
13,0	4845	4980	5113	5245	5356	5456	5547	5618	5685
13,5	5064	5201	5328	5442	5536	5619	5693	5748	5800
14,0	5273	5395	5504	5600	5677	5744	5802	5842	5879
14,5	5447	5552	5644	5724	5784	5836	5878	5904	5926
15,0	5588	5676	5751	5814	5859	5895	5923	5933	5940
15,5	5700	5771	5829	5877	5907	5928	5940	5940	5940
16,0	5787	5842	5885	5917	5932	5940	5940	5940	5940
16,5	5853	5892	5920	5938	5940	5940	5940	5940	5940
17,0	5899	5924	5938	5940	5940	5940	5940	5940	5940
17,5	5928	5938	5940	5940	5940	5940	5940	5940	5940
18,0	5939	5940	5940	5940	5940	5940	5940	5940	5940
18,5	5940	5940	5940	5940	5940	5940	5940	5940 5940	5940
19,0 19,5	5940 5940	5940 5940	5940 5940	5940 5940	5940 5940	5940 5940	5940 5940	5940	5940 5940
20,0	5940	5940	5940	5940	5940	5940	5940	5940	5940
20,5*	5940	5940	5940	5940	5940	5940	5940	5940	5940
21,0*	5940	5940	5940	5940	5940	5940	5940	5940	5940
21,5*	5940	5940	5940	5940	5940	5940	5940	5940	5940
22,0*	5794	5794	5794	5794	5794	5794	5794	5794	5794
22,5*	5528	5528	5528	5528	5528	5528	5528	5528	5528
23,0*	5270	5270	5270	5270	5270	5270	5270	5270	5270
23,5*	5012	5012	5012	5012	5012	5012	5012	5012	5012
24,0*	4760	4760	4760	4760	4760	4760	4760	4760	4760
24,5*	4508	4508	4508	4508	4508	4508	4508	4508	4508
25,0*	4264	4264	4264	4264	4264	4264	4264	4264	4264
25,5*	4019	4019	4019	4019	4019	4019	4019	4019	4019
26,0*	3774	3774	3774	3774	3774	3774	3774	3774	3774

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

(Betriebswe	ise nicht ve	rrugbar tur	138 m, 148	s iii una 159	in; aut Ani	rage fur 11	.8 m una 16	94 IN)
Windgeschwin- digkeit				P _{el} [kW] bei				
v _H [m/s]	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	24	26	28	30	32	34	37	39
3,5	118	122	127	131	135	139	143	147
4,0	246	253	260	267	274	281	288	295
4,5	406	417	427	438	448	459	469	480
5,0	598	613	628	643	657	672	687	702
5,5	826	845	865	885	905	925	944	964
6,0	1094	1119	1145	1171	1197	1222	1248	1274
6,5	1408	1441	1473	1506	1539	1571	1604	1637
7,0	1774	1815	1855	1896	1937	1977	2018	2059
7,5	2190	2240	2290	2340	2389	2439	2489	2539
8,0	2631	2690	2750	2809	2868	2928	2987	3046
8,5	3067	3136	3205	3274	3343	3412	3480	3549
9,0	3485	3563	3641	3719	3797	3875	3953	4031
9,5	3872	3959	4045	4132	4218	4304	4390	4476
10,0	4227	4321	4415	4509	4603	4697	4792	4884
10,5	4558	4659	4761	4864	4964	5057	5151	5236
11,0	4877	4987	5086	5184	5276	5353	5429	5497
11,5	5172	5273	5357	5437	5512	5573	5634	5688
12,0	5412	5495	5563	5627	5687	5733	5779	5818
12,5	5597	5665	5717	5766	5811	5842	5874	5898
13,0	5737	5790	5827	5861	5891	5908	5926	5936
13,5	5837	5874	5897	5917	5933	5936	5939	5940
14,0	5902	5924	5933	5938	5940	5940	5940	5940
14,5	5933	5940	5940	5940	5940	5940	5940	5940
15,0	5940	5940	5940	5940	5940	5940	5940	5940
15,5	5940	5940	5940	5940	5940	5940	5940	5940
16,0	5940	5940	5940	5940	5940	5940	5940	5940
16,5	5940	5940	5940	5940	5940	5940	5940	5940
17,0	5940	5940	5940	5940	5940	5940	5940	5940
17,5	5940	5940	5940	5940	5940	5940	5940	5940
18,0	5940	5940	5940	5940	5940	5940	5940	5940
18,5	5940	5940	5940	5940	5940	5940	5940	5940
19,0	5940	5940	5940	5940	5940	5940	5940	5940
19,5	5940	5940	5940	5940	5940	5940	5940	5940
20,0	5940	5940	5940	5940	5940	5940	5940	5940
20,5*	5940	5940	5940	5940	5940	5940	5940	5940
21,0*	5940	5940	5940	5940	5940	5940	5940	5940
21,5*	5940	5940	5940	5940	5940	5940	5940	5940
22,0*	5794	5794	5794	5794	5794	5794	5794	5794
22,5*	5528	5528	5528	5528	5528	5528	5528	5528
23,0*	5270	5270	5270	5270	5270	5270	5270	5270
23,5*	5012	5012	5012	5012	5012	5012	5012	5012
24,0*	4760	4760	4760	4760	4760	4760	4760	4760
24,5*	4508	4508	4508	4508	4508	4508	4508	4508
25,0*	4264	4264	4264	4264	4264	4264	4264	4264
25,5*	4019	4019	4019	4019	4019	4019	4019	4019
26,0*	3774	3774	3774	3774	3774	3774	3774	3774

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

(Betri	ebsweise ni	cnt verfügb	ar fur 138 i	m, 148 m ur	nd 159 m; a	ut Antrage	tur 118 m u	ind 164 m)	
Windgeschwin- digkeit			Leis	tung P _{el} [kV	V] bei Luftd	lichte $ ho$ [kg	/m³]		
ν _H [m/s]	0,900	0,925	0,950	0,975	1,000	1,025	1,050	1,075	1,100
3,0	5	7	10	12	14	16	18	20	22
3,5	81	85	89	93	97	102	106	110	114
4,0	183	190	197	204	211	218	225	232	239
4,5	311	322	332	343	353	364	374	385	396
5,0	465	480	495	509	524	539	554	569	583
5,5	647	667	687	706	726	746	766	786	806
6,0	862	887	913	939	965	991	1016	1042	1068
6,5	1114	1146	1179	1212	1244	1277	1310	1343	1375
7,0	1407	1448	1489	1529	1570	1611	1652	1692	1733
7,5	1736	1786	1836	1886	1936	1986	2035	2085	2135
8,0	2078	2137	2197	2256	2315	2374	2433	2492	2551
8,5	2413	2481	2549	2618	2686	2754	2822	2891	2959
9,0	2730	2807	2884	2961	3038	3115	3192	3269	3345
9,5	3021	3106	3191	3276	3361	3446	3531	3615	3700
10,0	3289	3381	3474	3566	3658	3750	3842	3934	4026
10,5	3542	3641	3740	3839	3938	4037	4136	4235	4333
11,0	3786	3892	3997	4103	4208	4314	4419	4525	4630
11,5	4024	4136	4248	4361	4472	4584	4696	4808	4920
12,0	4253	4371	4489	4607	4726	4844	4962	5075	5176
12,5	4472	4596	4721	4845	4969	5092	5198	5297	5381
13,0	4685	4816	4946	5074	5193	5300	5390	5472	5541
13,5	4895	5030	5161	5274	5377	5467	5541	5607	5660
14,0	5098	5227	5340	5437	5522	5597	5655	5705	5744
14,5	5277	5388	5485	5565	5634	5693	5736	5772	5796
15,0	5423	5517	5596	5661	5715	5758	5787	5808	5818
15,5	5540	5618	5681	5730	5769	5798	5812	5820	5820
16,0	5634	5696	5745	5779	5803	5818	5820	5820	5820
16,5	5708	5755	5788	5808	5819	5820	5820	5820	5820
17,0	5762	5794	5813	5819	5820	5820	5820	5820	5820
17,5	5797	5815	5820	5820	5820	5820	5820	5820	5820
18,0	5816	5820	5820	5820	5820	5820	5820	5820	5820
18,5	5820	5820	5820	5820	5820	5820	5820	5820	5820
19,0	5820	5820	5820	5820	5820	5820	5820	5820	5820
19,5	5820	5820	5820	5820	5820	5820	5820	5820	5820
20,0	5820	5820	5820	5820	5820	5820	5820	5820	5820
20,5*	5820	5820	5820	5820	5820	5820	5820	5820	5820
21,0*	5820	5820	5820	5820	5820	5820	5820	5820	5820
21,5*	5820	5820	5820	5820	5820	5820	5820	5820	5820
22,0*	5794	5794	5794	5794	5794	5794	5794	5794	5794
22,5*	5528	5528	5528	5528	5528	5528	5528	5528	5528
23,0*	5270	5270	5270	5270	5270	5270	5270	5270	5270
23,5*	5012	5012	5012	5012	5012	5012	5012	5012	5012
24,0*	4760	4760	4760	4760	4760	4760	4760	4760	4760
24,5*	4508	4508	4508	4508	4508	4508	4508	4508	4508
25,0*	4264	4264	4264	4264	4264	4264	4264	4264	4264
25,5*	4019	4019	4019	4019	4019	4019	4019	4019	4019
26,0*	3774	3774	3774	3774	3774	3774	3774	3774	3774

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

(Betriebswe	ise mont ve	errugbar für	138 M, 148	5 III ulla 155	aut Ani	rage fur 11	8 III und 16	94 111)
Windgeschwin- digkeit				P _{el} [kW] bei				
v _H [m/s]	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	24	26	28	30	32	34	37	39
3,5	118	122	127	131	135	139	143	147
4,0	246	253	260	267	274	281	288	295
4,5	406	417	427	438	448	459	469	480
5,0	598	613	628	643	657	672	687	702
5,5	826	845	865	885	905	925	944	964
6,0	1094	1119	1145	1171	1197	1222	1248	1274
6,5	1408	1441	1473	1506	1539	1571	1604	1636
7,0	1774	1815	1855	1896	1937	1977	2018	2059
7,5	2185	2234	2284	2334	2383	2433	2483	2532
8,0	2610	2669	2728	2787	2846	2905	2964	3023
8,5	3027	3095	3163	3231	3299	3367	3435	3503
9,0	3422	3499	3576	3652	3729	3805	3882	3958
9,5	3785	3869	3954	4038	4123	4207	4291	4375
10,0	4118	4209	4301	4393	4484	4576	4669	4761
10,5	4432	4530	4629	4728	4828	4921	5012	5103
11,0	4735	4842	4944	5039	5134	5213	5288	5362
11,5	5024	5122	5214	5292	5369	5433	5493	5552
12,0	5265	5346	5421	5483	5546	5595	5640	5684
12,5	5454	5519	5579	5626	5674	5709	5739	5770
13,0	5598	5648	5693	5726	5759	5780	5797	5814
13,5	5703	5738	5769	5788	5807	5815	5818	5820
14,0	5772	5794	5810	5815	5820	5820	5820	5820
14,5	5810	5817	5820	5820	5820	5820	5820	5820
15,0	5820	5820	5820	5820	5820	5820	5820	5820
15,5	5820	5820	5820	5820	5820	5820	5820	5820
16,0	5820	5820	5820	5820	5820	5820	5820	5820
16,5	5820	5820	5820	5820	5820	5820	5820	5820
17,0	5820	5820	5820	5820	5820	5820	5820	5820
17,5	5820	5820	5820	5820	5820	5820	5820	5820
18,0	5820	5820	5820	5820	5820	5820	5820	5820
18,5	5820	5820	5820	5820	5820	5820	5820	5820
19,0	5820	5820	5820	5820	5820	5820	5820	5820
19,5	5820	5820	5820	5820	5820	5820	5820	5820
20,0	5820	5820	5820	5820	5820	5820	5820	5820
20,5*	5820	5820	5820	5820	5820	5820	5820	5820
21,0*	5820	5820	5820	5820	5820	5820	5820	5820
21,5*	5820	5820	5820	5820	5820	5820	5820	5820
22,0*	5794	5794	5794	5794	5794	5794	5794	5794
22,5*	5528	5528	5528	5528	5528	5528	5528	5528
23,0*	5270	5270	5270	5270	5270	5270	5270	5270
23,5*	5012	5012	5012	5012	5012	5012	5012	5012
24,0*	4760	4760	4760	4760	4760	4760	4760	4760
24,5*	4508	4508	4508	4508	4508	4508	4508	4508
25,0*	4264	4264	4264	4264	4264	4264	4264	4264
25,5*	4019	4019	4019	4019	4019	4019	4019	4019
26,0*	3774	3774	3774	3774	3774	3774	3774	3774

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

für Nabenhöhen 118 m, 138 m, 148 m, 159 m und 164 m (Betriebsweise auf Anfrage für 118 m, 138 m, 148 m, 159 m und 164 m)

	(Betri	ebsweise a	uf Anfrage f	für 118 m, 1	138 m, 148 r	m, 159 m u	nd 164 m)		
Windgeschwin- digkeit					V] bei Luftd	,	_		
v _H [m/s]	1,100	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	22	24	26	28	30	32	34	37	39
3,5	114	118	122	127	131	135	139	143	147
4,0	239	246	253	260	267	274	281	288	295
4,5	396	406	417	427	438	448	459	469	480
5,0	583	598	613	628	643	657	672	687	702
5,5	806	826	845	865	885	905	925	944	964
6,0	1068	1094	1119	1145	1171	1197	1222	1248	1274
6,5	1375	1407	1440	1473	1505	1538	1570	1603	1636
7,0	1713	1753	1793	1834	1874	1914	1954	1995	2035
7,5	2053	2100	2148	2196	2244	2292	2340	2387	2435
8,0	2378	2433	2488	2543	2598	2654	2709	2764	2819
8,5	2677	2738	2800	2862	2924	2986	3047	3109	3171
9,0	2947	3015	3083	3151	3219	3287	3354	3422	3490
9,5	3201	3275	3348	3422	3495	3569	3642	3715	3789
10,0	3446	3525	3604	3682	3761	3840	3919	3998	4076
10,5	3682	3767	3851	3935	4019	4103	4187	4271	4356
11,0	3909	3998	4087	4176	4265	4354	4444	4534	4614
11,5	4126	4220	4314	4408	4503	4596	4679	4762	4827
12,0	4338	4436	4535	4633	4718	4802	4870	4938	4991
12,5	4545	4648	4736	4822	4893	4962	5017	5072	5112
13,0	4735	4824	4898	4970	5027	5083	5126	5168	5196
13,5	4888	4963	5023	5081	5126	5169	5199	5229	5245
14,0	5009	5070	5118	5163	5195	5226	5244	5262	5266
14,5	5104	5153	5188	5221	5241	5259	5265	5270	5270
15,0	5176	5212	5235	5256	5264	5270	5270	5270	5270
15,5	5227	5251	5261	5270	5270	5270	5270	5270	5270
16,0	5257	5269	5270	5270	5270	5270	5270	5270	5270
16,5	5269	5270	5270	5270	5270	5270	5270	5270	5270
17,0	5270	5270	5270	5270	5270	5270	5270	5270	5270
17,5	5270	5270	5270	5270	5270	5270	5270	5270	5270
18,0	5270	5270	5270	5270	5270	5270	5270	5270	5270
18,5	5270	5270	5270	5270	5270	5270	5270	5270	5270
19,0	5270	5270	5270	5270	5270	5270	5270	5270	5270
19,5	5270	5270	5270	5270	5270	5270	5270	5270	5270
20,0	5270	5270	5270	5270	5270	5270	5270	5270	5270
20,5*	5270	5270	5270	5270	5270	5270	5270	5270	5270
21,0*	5270	5270	5270	5270	5270	5270	5270	5270	5270
21,5*	5270	5270	5270	5270	5270	5270	5270	5270	5270
22,0*	5270	5270	5270	5270	5270	5270	5270	5270	5270
22,5*	5270	5270	5270	5270	5270	5270	5270	5270	5270
23,0*	5270	5270	5270	5270	5270	5270	5270	5270	5270
23,5*	5012	5012	5012	5012	5012	5012	5012	5012	5012
24,0*	4760	4760	4760	4760	4760	4760	4760	4760	4760
24,5*	4508	4508	4508	4508	4508	4508	4508	4508	4508
25,0*	4264	4264	4264	4264	4264	4264	4264	4264	4264
25,5*	4019	4019	4019	4019	4019	4019	4019	4019	4019
26,0*	3774	3774	3774	3774	3774	3774	3774	3774	3774

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

für Nabenhöhen 118 m, 138 m, 148 m, 159 m und 164 m (Betriebsweise auf Anfrage für 118 m, 138 m, 148 m, 159 m und 164 m)

	(Betri				.38 m, 148 r		nd 164 m)		
Windgeschwin- digkeit			Leist	tung P _{el} [kV	V] bei Luftd	lichte $ ho$ [kg	/m³]		
v _H [m/s]	1,100	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	22	24	26	28	30	32	34	37	39
3,5	114	118	122	127	131	135	139	143	147
4,0	239	246	253	260	267	274	281	288	295
4,5	396	406	417	427	438	448	459	469	480
5,0	583	598	613	628	643	657	672	687	702
5,5	806	826	845	865	885	905	925	944	964
6,0	1068	1094	1119	1145	1171	1197	1222	1248	1274
6,5	1373	1406	1439	1471	1504	1536	1569	1602	1634
7,0	1704	1744	1784	1824	1864	1904	1944	1984	2024
7,5	2031	2078	2126	2173	2221	2268	2315	2363	2410
8,0	2341	2395	2449	2504	2558	2612	2666	2721	2775
8,5	2623	2684	2744	2805	2866	2926	2987	3047	3108
9,0	2880	2947	3013	3080	3146	3212	3278	3345	3411
9,5	3123	3195	3267	3339	3410	3482	3554	3625	3697
10,0	3359	3436	3513	3590	3667	3744	3820	3897	3974
10,5	3587	3669	3751	3833	3915	3997	4079	4160	4242
11,0	3803	3890	3976	4063	4150	4236	4323	4411	4495
11,5	4012	4103	4195	4286	4377	4469	4556	4637	4712
12,0	4215	4311	4407	4503	4593	4676	4751	4817	4879
12,5	4416	4516	4609	4694	4771	4840	4901	4955	5004
13,0	4608	4695	4775	4846	4909	4965	5014	5055	5091
13,5	4764	4837	4903	4961	5012	5055	5091	5120	5145
14,0	4890	4950	5003	5049	5087	5118	5143	5160	5173
14,5	4992	5039	5080	5113	5139	5159	5172	5177	5180
15,0	5069	5104	5133	5155	5169	5177	5180	5180	5180
15,5	5125	5149	5166	5176	5180	5180	5180	5180	5180
16,0	5161	5173	5180	5180	5180	5180	5180	5180	5180
16,5	5178	5180	5180	5180	5180	5180	5180	5180	5180
17,0	5180	5180	5180	5180	5180	5180	5180	5180	5180
17,5	5180	5180	5180	5180	5180	5180	5180	5180	5180
18,0	5180	5180	5180	5180	5180	5180	5180	5180	5180
18,5	5180	5180	5180	5180	5180	5180	5180	5180	5180
19,0	5180	5180	5180	5180	5180	5180	5180	5180	5180
19,5	5180	5180	5180	5180	5180	5180	5180	5180	5180
20,0	5180	5180	5180	5180	5180	5180	5180	5180	5180
20,5*	5180	5180	5180	5180	5180	5180	5180	5180	5180
21,0*	5180	5180	5180	5180	5180	5180	5180	5180	5180
21,5*	5180	5180	5180	5180	5180	5180	5180	5180	5180
22,0*	5180	5180	5180	5180	5180	5180	5180	5180	5180
22,5*	5180	5180	5180	5180	5180	5180	5180	5180	5180
23,0*	5180	5180	5180	5180	5180	5180	5180	5180	5180
23,5*	5012	5012	5012	5012	5012	5012	5012	5012	5012
24,0*	4760	4760	4760	4760	4760	4760	4760	4760	4760
24,5*	4508	4508	4508	4508	4508	4508	4508	4508	4508
25,0*	4264	4264	4264	4264	4264	4264	4264	4264	4264
25,5*	4019	4019	4019	4019	4019	4019	4019	4019	4019
26,0*	3774	3774	3774	3774	3774	3774	3774	3774	3774
20,0	3774	3774	3774	3774	3774	3774	3774	3774	3774

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

		für Naber	ıhöhen 118	m, 138 m,	148 m, 159	m und 164	m		
Windgeschwin- digkeit			Leist	tung P _{el} [kV	V] bei Luftd	lichte $ ho$ [kg	/m³]		
v _н [m/s]	1,100	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	22	24	26	28	30	32	34	37	39
3,5	114	118	122	127	131	135	139	143	147
4,0	239	246	253	260	267	274	281	288	295
4,5	396	406	417	427	438	448	459	469	480
5,0	583	598	613	628	643	657	672	687	702
5,5	806	826	845	865	885	905	925	944	964
6,0	1068	1094	1119	1145	1171	1197	1222	1248	1274
6,5	1369	1401	1434	1466	1499	1531	1564	1596	1629
7,0	1682	1722	1762	1801	1841	1880	1920	1959	1999
7,5	1987	2034	2080	2126	2173	2219	2266	2312	2358
8,0	2269	2322	2375	2428	2480	2533	2586	2638	2691
8,5	2525	2583	2642	2700	2759	2817	2875	2934	2992
9,0	2761	2825	2888	2952	3016	3079	3143	3207	3270
9,5	2987	3055	3124	3193	3262	3330	3399	3467	3536
10,0	3205	3279	3353	3426	3500	3573	3647	3720	3794
10,5	3415	3493	3571	3649	3728	3806	3884	3962	404:
11,0	3615	3698	3780	3863	3945	4028	4112	4192	426
11,5	3810	3897	3983	4071	4158	4240	4317	4388	4449
12,0	4001	4092	4184	4268	4347	4418	4481	4539	4588
12,5	4190	4278	4358	4431	4496	4554	4605	4650	4688
13,0	4354	4429	4497	4556	4609	4655	4694	4728	475
13,5	4487	4550	4604	4652	4693	4727	4754	4777	479
14,0	4594	4644	4687	4723	4752	4775	4792	4804	4808
14,5	4678	4716	4748	4772	4791	4802	4808	4810	4810
15,0	4739	4710	4748	4800	4807	4810	4810	4810	4810
15,5	4781	4797	4806	4810	4810	4810	4810	4810	4810
16,0	4804	4810	4810	4810	4810	4810	4810	4810	4810
16,5	4810	4810	4810	4810	4810	4810	4810	4810	4810
	4810	4810	4810	4810	4810	4810	4810	4810	4810
17,0	4810	4810	4810	4810	4810	4810	4810	4810	4810
17,5	4810	4810	4810	4810	4810	4810	4810	4810	4810
18,0	4810		4810		4810	4810	4810	4810	
18,5		4810		4810 4810	4810			4810	4810
19,0 19,5	4810 4810	4810 4810	4810 4810	4810	4810	4810 4810	4810 4810	4810	4810 4810
20,0	4810	4810	4810	4810 4810	4810	4810	4810	4810	4810
20,5* 21,0*	4810	4810	4810		4810	4810	4810	4810	4810
21,5*	4810	4810	4810	4810	4810	4810	4810	4810	4810
,	4810	4810	4810	4810	4810	4810	4810	4810	4810
22,0*	4810	4810	4810	4810	4810	4810	4810	4810	4810
22,5*	4810	4810	4810	4810	4810	4810	4810	4810	4810
23,0*	4810	4810	4810	4810	4810	4810	4810	4810	4810
23,5*	4810	4810	4810	4810	4810	4810	4810	4810	4810
24,0*	4760	4760	4760	4760	4760	4760	4760	4760	4760
24,5*	4508	4508	4508	4508	4508	4508	4508	4508	450
25,0*	4264	4264	4264	4264	4264	4264	4264	4264	4264
25,5* 26,0*	4019 3774	4019 3774	4019 3774	4019 3774	4019 3774	4019 3774	4019 3774	4019 3774	4019 3774

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

		für Naber	nhöhen 118	m, 138 m,	148 m, 159	m und 164	m		
Windgeschwin- digkeit			Leist	tung P _{el} [kV	V] bei Luftd	lichte $ ho$ [kg	/m³]		
v _H [m/s]	1,100	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	22	24	26	28	30	32	34	37	39
3,5	114	118	122	127	131	135	139	143	147
4,0	239	246	253	260	267	274	281	288	295
4,5	396	406	417	427	438	448	459	469	480
5,0	583	598	613	628	643	657	672	687	702
5,5	806	826	845	865	885	905	925	944	964
6,0	1068	1093	1119	1145	1171	1196	1222	1248	1274
6,5	1363	1395	1428	1460	1492	1525	1557	1589	1622
7,0	1662	1701	1740	1779	1818	1858	1897	1936	1975
7,5	1948	1994	2040	2085	2131	2176	2222	2267	2313
8,0	2210	2262	2313	2364	2416	2467	2518	2570	2621
8,5	2447	2503	2560	2617	2673	2730	2787	2843	2900
9,0	2668	2730	2792	2853	2915	2976	3038	3100	3161
9,5	2882	2948	3015	3081	3148	3214	3280	3347	3413
10,0	3089	3160	3231	3302	3373	3444	3515	3585	3656
10,5	3285	3360	3436	3511	3586	3661	3737	3813	3888
11,0	3474	3554	3633	3713	3792	3873	3950	4022	4091
11,5	3659	3742	3826	3911	3989	4063	4131	4190	4246
	3841	3929	4010	4086	4154	4215	4270	4317	4361
12,0 12,5	4015	4092	4161	4224	4279	4329	4372	4408	4441
13,0	4013	4092	4278	4329	4373	4410	4443	4467	4490
13,5	4271	4324	4369	4408	4441	4467	4489	4503	4516
14,0	4362	4403	4437	4465	4487	4503	4514	4518	4520
14,5	4430	4461	4484	4502	4513	4518	4520	4520	4520
15,0	4479	4498	4511	4518	4520	4520	4520	4520	4520
15,5	4508	4517	4520	4520	4520	4520	4520	4520	4520
16,0	4520	4520	4520	4520	4520	4520	4520	4520	4520
16,5	4520	4520	4520	4520	4520	4520	4520	4520	4520
17,0	4520	4520	4520	4520	4520	4520	4520	4520	4520
17,5	4520	4520	4520	4520	4520	4520	4520	4520	4520
18,0	4520	4520	4520	4520	4520	4520	4520	4520	4520
18,5	4520	4520	4520	4520	4520	4520	4520	4520	4520
19,0	4520	4520	4520	4520	4520	4520	4520	4520	4520
19,5	4520	4520	4520	4520	4520	4520	4520	4520	4520
20,0	4520	4520	4520	4520	4520	4520	4520	4520	4520
20,5*	4520	4520	4520	4520	4520	4520	4520	4520	4520
21,0*	4520	4520	4520	4520	4520	4520	4520	4520	4520
21,5*	4520	4520	4520	4520	4520	4520	4520	4520	4520
22,0*	4520	4520	4520	4520	4520	4520	4520	4520	4520
22,5*	4520	4520	4520	4520	4520	4520	4520	4520	4520
23,0*	4520	4520	4520	4520	4520	4520	4520	4520	4520
23,5*	4520	4520	4520	4520	4520	4520	4520	4520	4520
24,0*	4520	4520	4520	4520	4520	4520	4520	4520	4520
24,5*	4508	4508	4508	4508	4508	4508	4508	4508	4508
25,0*	4264	4264	4264	4264	4264	4264	4264	4264	4264
25,5*	4019	4019	4019	4019	4019	4019	4019	4019	4019
26,0*	3774	3774	3774	3774	3774	3774	3774	3774	3774

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

		für Naben	höhen 118	m, 138 m,	148 m, 159	m und 164	m		
Windgeschwin- digkeit			Leist	tung P _{el} [kV	/] bei Luftd	ichte $ ho$ [kg	/m³]		
v _H [m/s]	1,100	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	22	24	26	28	30	32	34	37	39
3,5	114	118	122	127	131	135	139	143	147
4,0	239	246	253	260	267	274	281	288	295
4,5	396	406	417	427	438	448	459	469	480
5,0	583	598	613	628	643	657	672	687	702
5,5	806	826	845	865	885	905	925	945	964
6,0	1067	1093	1118	1144	1170	1195	1221	1247	1273
6,5	1353	1385	1417	1449	1482	1514	1546	1578	1610
7,0	1637	1676	1714	1753	1791	1830	1868	1907	1945
7,5	1904	1949	1993	2038	2082	2127	2171	2216	2260
8,0	2146	2195	2245	2295	2345	2395	2445	2495	2545
8,5	2366	2421	2475	2530	2585	2640	2695	2750	2804
9,0	2574	2634	2693	2753	2812	2872	2931	2991	3050
9,5	2776	2841	2905	2969	3033	3097	3161	3225	3288
10,0	2970	3038	3106	3175	3243	3311	3379	3448	3517
10,5	3154	3227	3299	3371	3444	3516	3590	3660	3728
11,0	3333	3409	3486	3563	3640	3712	3782	3845	3900
11,5	3508	3589	3670	3744	3815	3878	3934	3986	4029
12,0	3683	3759	3832	3894	3953	4003	4049	4089	4122
12,5	3834	3898	3958	4009	4056	4005	4130	4159	4182
13,0	3955	4007	4056	4009	4132	4160	4184	4204	4216
13,5	4051	4092	4130	4159	4184	4203	4217	4226	4229
14,0	4124	4155	4182	4201	4217	4205	4217	4230	4230
14,5	4178	4198	4215	4224	4229	4230	4230	4230	4230
15,0	4212	4222	4213	4230	4230	4230	4230	4230	4230
15,5	4212	4230	4230	4230	4230	4230	4230	4230	4230
16,0	4230	4230	4230	4230	4230	4230	4230	4230	4230
16,5	4230	4230	4230	4230	4230	4230	4230	4230	4230
17,0	4230	4230	4230	4230	4230	4230	4230	4230	4230
17,5	4230	4230	4230	4230	4230	4230	4230	4230	4230
18,0	4230	4230	4230	4230	4230	4230	4230	4230	4230
18,5	4230	4230	4230	4230	4230	4230	4230	4230	4230
19,0	4230	4230	4230	4230	4230	4230	4230	4230	4230
19,5	4230	4230	4230	4230	4230	4230	4230	4230	4230
20,0	4230	4230	4230	4230	4230	4230	4230	4230	4230
20,5*	4230	4230	4230	4230	4230	4230	4230	4230	4230
21,0*	4230	4230	4230	4230	4230	4230	4230	4230	4230
21,5*	4230	4230	4230	4230	4230	4230	4230	4230	4230
22,0*	4230	4230	4230	4230	4230	4230	4230	4230	4230
22,5*	4230	4230	4230	4230	4230	4230	4230	4230	4230
23,0*	4230	4230	4230	4230	4230	4230	4230	4230	4230
	4230		4230	4230	4230	4230		4230	4230
23,5*		4230					4230		
24,0*	4230	4230	4230	4230	4230	4230	4230	4230	4230
24,5*	4230	4230	4230	4230	4230	4230	4230	4230	4230
25,0* 25,5*	4230	4230 4019	4230 4019	4230 4019	4230	4230	4230 4019	4230	4230 4019
/	4019	4019	4019	4019	4019	4019	4019	4019	4019

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

		für Naber	ıhöhen 118	m, 138 m,	148 m, 159	m und 164	m		
Windgeschwin- digkeit			Leist	tung P _{el} [kV	V] bei Luftd	lichte $ ho$ [kg	/m³]		
ν _H [m/s]	1,100	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	22	24	26	28	30	32	34	37	39
3,5	114	118	122	127	131	135	139	143	147
4,0	239	246	253	260	267	274	281	288	295
4,5	396	406	417	427	438	448	459	469	480
5,0	583	598	613	628	643	657	672	687	702
5,5	806	826	845	865	885	905	925	945	964
6,0	1065	1090	1116	1142	1167	1193	1219	1244	1270
6,5	1339	1371	1402	1434	1466	1498	1530	1562	1593
7,0	1606	1644	1681	1719	1757	1795	1833	1871	1908
7,5	1852	1896	1939	1982	2026	2069	2112	2156	2199
8,0	2074	2122	2170	2219	2267	2315	2364	2412	2460
8,5	2278	2331	2384	2437	2490	2543	2596	2649	2702
9,0	2474	2532	2589	2646	2704	2761	2818	2876	2933
9,5	2664	2726	2788	2849	2911	2972	3034	3095	3157
10,0	2844	2910	2975	3041	3106	3172	3238	3303	3365
10,5	3017	3087	3156	3226	3296	3363	3428	3490	3540
11,0	3186	3260	3334	3403	3469	3529	3581	3631	3671
11,5	3353	3424	3492	3551	3606	3654	3695	3735	3764
12,0	3500	3560	3616	3664	3707	3745	3776	3805	3825
12,5	3616	3664	3709	3747	3779	3807	3828	3847	3857
13,0	3707	3745	3779	3806	3829	3847	3858	3868	3869
13,5	3776	3804	3828	3845	3859	3867	3869	3870	3870
14,0	3825	3843	3858	3866	3869	3870	3870	3870	3870
14,5	3856	3864	3869	3870	3870	3870	3870	3870	3870
15,0	3869	3870	3870	3870	3870	3870	3870	3870	3870
15,5	3870	3870	3870	3870	3870	3870	3870	3870	3870
16,0	3870	3870	3870	3870	3870	3870	3870	3870	3870
16,5	3870	3870	3870	3870	3870	3870	3870	3870	3870
17,0	3870	3870	3870	3870	3870	3870	3870	3870	3870
	3870	3870	3870	3870	3870	3870	3870	3870	3870
17,5									3870
18,0	3870	3870	3870	3870	3870	3870	3870	3870	
18,5	3870	3870	3870	3870	3870	3870	3870	3870	3870
19,0	3870	3870	3870	3870	3870	3870 3870	3870	3870	3870
19,5	3870	3870	3870	3870	3870		3870	3870	3870
20,0	3870	3870	3870	3870	3870	3870	3870	3870	3870
20,5*	3870	3870	3870	3870	3870	3870	3870	3870	3870
21,0*	3870	3870	3870	3870	3870	3870	3870	3870	3870
21,5*	3870	3870	3870	3870	3870	3870	3870	3870	3870
22,0*	3870	3870	3870	3870	3870	3870	3870	3870	3870
22,5*	3870	3870	3870	3870	3870	3870	3870	3870	3870
23,0*	3870	3870	3870	3870	3870	3870	3870	3870	3870
23,5*	3870	3870	3870	3870	3870	3870	3870	3870	3870
24,0*	3870	3870	3870	3870	3870	3870	3870	3870	3870
24,5*	3870	3870	3870	3870	3870	3870	3870	3870	3870
25,0*	3870	3870	3870	3870	3870	3870	3870	3870	3870
25,5*	3870	3870	3870	3870	3870	3870	3870	3870	3870
26,0*	3774	3774	3774	3774	3774	3774	3774	3774	3774

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

	für Nabenhöhen 118 m, 138 m, 148 m, 159 m und 164 m										
Windgeschwin- digkeit	Leistung P $_{ m el}$ [kW] bei Luftdichte $ ho$ [kg/m 3]										
v _н [m/s]	1,100	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300		
3,0	22	24	26	28	30	32	34	37	39		
3,5	114	118	122	127	131	135	139	143	147		
4,0	239	246	253	260	267	274	281	288	295		
4,5	396	406	417	427	438	448	459	469	480		
5,0	583	598	613	628	643	657	672	687	702		
5,5	806	826	845	865	885	905	925	945	964		
6,0	1061	1086	1112	1137	1163	1189	1214	1240	1265		
6,5	1322	1354	1385	1417	1448	1479	1511	1542	1574		
7,0	1572	1609	1646	1683	1720	1757	1794	1831	1869		
7,5	1799	1841	1883	1925	1967	2010	2052	2094	2136		
8,0	2003	2050	2097	2143	2190	2237	2284	2330	2377		
8,5	2195	2246	2297	2348	2399	2450	2501	2552	2603		
9,0	2380	2435	2490	2546	2601	2656	2711	2766	2821		
9,5	2557	2616	2675	2734	2793	2852	2911	2971	3030		
10,0	2725	2788	2851	2914	2977	3040	3103	3162	3222		
10,5	2888	2955	3022	3089	3153	3215	3273	3322	3370		
11,0	3049	3120	3185	3249	3305	3355	3402	3441	3479		
11,5	3201	3267	3322	3374	3419	3459	3496	3524	3553		
12,0	3328	3381	3426	3468	3503	3533	3559	3578	3597		
12,5	3426	3470	3504	3536	3561	3581	3599	3608	3618		
13,0	3503	3536	3561	3582	3598	3610	3618	3619	3620		
13,5	3558	3582	3597	3610	3617	3619	3620	3620	3620		
14,0	3595	3610	3616	3619	3620	3620	3620	3620	3620		
14,5	3615	3620	3620	3620	3620	3620	3620	3620	3620		
15,0	3620	3620	3620	3620	3620	3620	3620	3620	3620		
15,5	3620	3620	3620	3620	3620	3620	3620	3620	3620		
16,0	3620	3620	3620	3620	3620	3620	3620	3620	3620		
16,5	3620	3620	3620	3620	3620	3620	3620	3620	3620		
17,0	3620	3620	3620	3620	3620	3620	3620	3620	3620		
17,5	3620	3620	3620	3620	3620	3620	3620	3620	3620		
18,0	3620	3620	3620	3620	3620	3620	3620	3620	3620		
18,5	3620	3620	3620	3620	3620	3620	3620	3620	3620		
19,0	3620	3620	3620	3620	3620	3620	3620	3620	3620		
19,5	3620	3620	3620	3620	3620	3620	3620	3620	3620		
20,0	3620	3620	3620	3620	3620	3620	3620	3620	3620		

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

	für Nabenhöhen 118 m, 138 m, 148 m, 159 m und 164 m										
Windgeschwin- digkeit	Leistung P_{el} [kW] bei Luftdichte $ ho$ [kg/m 3]										
ν _H [m/s]	1,100	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300		
3,0	22	24	26	28	30	32	35	37	39		
3,5	114	118	122	127	131	135	139	143	147		
4,0	239	246	253	260	267	274	281	288	295		
4,5	396	406	417	427	438	448	459	469	480		
5,0	583	598	613	628	643	657	672	687	702		
5,5	805	825	845	865	885	905	924	944	964		
6,0	1053	1079	1104	1130	1155	1181	1206	1231	1257		
6,5	1301	1332	1363	1394	1425	1456	1487	1518	1549		
7,0	1533	1569	1605	1642	1678	1714	1750	1786	1822		
7,5	1741	1782	1823	1864	1905	1946	1986	2027	2068		
8,0	1931	1976	2021	2066	2111	2156	2201	2247	2292		
8,5	2111	2160	2209	2258	2307	2356	2406	2455	2504		
9,0	2285	2338	2391	2445	2498	2551	2604	2657	2710		
9,5	2450	2507	2564	2621	2677	2734	2791	2848	2903		
10,0	2608	2669	2729	2789	2850	2910	2967	3024	3069		
10,5	2762	2826	2891	2952	3011	3066	3112	3158	3194		
11,0	2915	2978	3039	3091	3139	3183	3219	3256	3282		
11,5	3051	3103	3153	3195	3233	3267	3294	3321	3338		
12,0	3157	3199	3239	3271	3300	3324	3342	3360	3368		
12,5	3240	3272	3303	3326	3345	3361	3370	3379	3380		
13,0	3302	3325	3346	3361	3371	3378	3379	3380	3380		
13,5	3346	3360	3372	3377	3379	3380	3380	3380	3380		
14,0	3371	3377	3380	3380	3380	3380	3380	3380	3380		
14,5	3380	3380	3380	3380	3380	3380	3380	3380	3380		
15,0	3380	3380	3380	3380	3380	3380	3380	3380	3380		
15,5	3380	3380	3380	3380	3380	3380	3380	3380	3380		
16,0	3380	3380	3380	3380	3380	3380	3380	3380	3380		
16,5	3380	3380	3380	3380	3380	3380	3380	3380	3380		
17,0	3380	3380	3380	3380	3380	3380	3380	3380	3380		
17,5	3380	3380	3380	3380	3380	3380	3380	3380	3380		
18,0	3380	3380	3380	3380	3380	3380	3380	3380	3380		
18,5	3380	3380	3380	3380	3380	3380	3380	3380	3380		
19,0	3380	3380	3380	3380	3380	3380	3380	3380	3380		
19,5	3380	3380	3380	3380	3380	3380	3380	3380	3380		
20,0	3380	3380	3380	3380	3380	3380	3380	3380	3380		

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

Nordex N163/6.X - Leistungskurven - Mode 17

		für Naben	ıhöhen 118	m, 138 m,	148 m, 159	m und 164	m		
Windgeschwin- digkeit			Leist	tung P _{el} [kV	V] bei Luftd	ichte $ ho$ [kg	/m³]		
ν _H [m/s]	1,100	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	22	24	26	28	30	32	35	37	39
3,5	114	118	122	127	131	135	139	143	147
4,0	239	246	253	260	267	274	281	288	295
4,5	396	406	417	427	438	448	459	469	480
5,0	583	598	613	628	643	657	672	687	702
5,5	805	825	844	864	884	904	924	943	963
6,0	1046	1071	1097	1122	1147	1172	1198	1223	1248
6,5	1283	1313	1344	1374	1405	1435	1466	1497	1527
7,0	1501	1537	1572	1608	1643	1678	1714	1749	1785
7,5	1696	1736	1776	1816	1856	1896	1936	1975	2015
8,0	1876	1920	1964	2007	2051	2095	2139	2183	2227
8,5	2048	2095	2143	2191	2239	2286	2334	2382	2429
9,0	2212	2264	2315	2367	2418	2470	2521	2573	2624
9,5	2369	2424	2479	2534	2589	2644	2699	2752	2805
10,0	2520	2578	2637	2696	2752	2808	2860	2903	2947
10,5	2668	2730	2788	2846	2895	2940	2982	3016	3050
11,0	2809	2868	2916	2962	3002	3037	3070	3095	3119
11,5	2925	2973	3011	3048	3079	3105	3128	3145	3161
12,0	3015	3053	3082	3110	3131	3148	3163	3171	3178
12,5	3083	3112	3132	3151	3164	3173	3179	3180	3180
13,0	3132	3152	3164	3174	3179	3180	3180	3180	3180
13,5	3163	3175	3178	3180	3180	3180	3180	3180	3180
14,0	3177	3180	3180	3180	3180	3180	3180	3180	3180
14,5	3180	3180	3180	3180	3180	3180	3180	3180	3180
15,0	3180	3180	3180	3180	3180	3180	3180	3180	3180
15,5	3180	3180	3180	3180	3180	3180	3180	3180	3180
16,0	3180	3180	3180	3180	3180	3180	3180	3180	3180
16,5	3180	3180	3180	3180	3180	3180	3180	3180	3180
17,0	3180	3180	3180	3180	3180	3180	3180	3180	3180
17,5	3180	3180	3180	3180	3180	3180	3180	3180	3180
18,0	3180	3180	3180	3180	3180	3180	3180	3180	3180
18,5	3180	3180	3180	3180	3180	3180	3180	3180	3180
19,0	3180	3180	3180	3180	3180	3180	3180	3180	3180
19,5	3180	3180	3180	3180	3180	3180	3180	3180	3180
20,0	3180	3180	3180	3180	3180	3180	3180	3180	3180

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

Nordex N163/6.X – Allgemeine Bemerkungen Schubbeiwerte

Grundlage:

Die vorliegenden Schubbeiwerte basieren auf aerodynamischen Berechnungen der Nordex Energy SE & Co. KG. Die Schubbeiwerte besitzen rein informativen Charakter und werden nicht gewährleistet.

72 0,872 60 0,860 45 0,845	0,950 0,872	ubbeiwerte 0,975		lichte $ ho$ [kg	/m³]									
72 0,872 60 0,860 45 0,845	0,872	0,975	Schubbeiwerte c_T bei Luftdichte ρ [kg/m³] 0,900 0,925 0,950 0,975 1,000 1,025 1,050 1,075 1,10											
0,860 0,845			1,000	1,025	1,050	1,075	1,100							
0,860 0,845		0,872	0,872	0,872	0,872	0,872	0,872							
15 0,845	0,860	0,860	0,860	0,860	0,860	0,860	0,860							
	0,845	0,845	0,845	0,845	0,845	0,845	0,845							
31 0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831							
20 0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820							
13 0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813							
							0,808							
,							0,805							
							0,803							
							0,802							
							0,790							
				,			0,768							
,							0,738							
			· · · · · · · · · · · · · · · · · · ·				0,704							
							0,665							
				,			0,622							
							0,576							
				,			0,530							
							0,484							
,				,		,	0,439							
						,	0,397							
					,		0,359							
							0,324							
				,			0,294							
							0,266							
							0,241							
							0,218							
							0,198							
							0,181							
							0,167							
				,			0,155							
							0,144							
							0,136							
							0,129							
	,				,		0,123							
							0,110							
				,	,		0,099							
							0,089							
							0,089							
							0,080							
							0,071							
							0,057							
							0,051 0,046							
							0,042							
							0,038 0,036							
	0,813 0,808 0,808 0,808 0,805 0,805 0,805 0,802 0,802 0,802 0,900 0,790 0,68 0,768 0,838 0,738 0,4 0,704 0,667 0,667 0,667 0,668 0,628 0,888 0,588 0,588 0,588 0,588 0,588 0,588 0,588 0,588 0,628 0,463 0,77 0,273 0,273 0,273 0,273 0,213 0,297 0,273 0,213 0,217 0,213 0,217 0,213 0,217 0,213 0,217 0,213 0,217 0,213 0,217 0,213 0,217 0,213 0,217 0,213 0,210 0,106 0,77 0,016 0,106 0,77 0,095 0,106 0,70 0,006 0,70 0,006 0,	08 0,808 0,808 05 0,805 0,805 03 0,803 0,803 02 0,802 0,802 90 0,790 0,790 68 0,768 0,768 38 0,738 0,738 04 0,704 0,704 67 0,667 0,667 28 0,628 0,628 38 0,588 0,588 48 0,547 0,546 07 0,505 0,503 66 0,463 0,461 27 0,424 0,421 91 0,387 0,384 68 0,354 0,351 28 0,324 0,321 01 0,297 0,293 77 0,273 0,268 64 0,250 0,246 35 0,230 0,226 17 0,213 0,208 02 0,197 0,193	08 0,808 0,808 0,808 0,808 05 0,805 0,805 0,805 0,805 03 0,803 0,802 0,802 0,802 09 0,790 0,790 0,790 0,790 68 0,768 0,768 0,768 0,768 38 0,738 0,738 0,738 0,738 04 0,704 0,704 0,704 0,704 67 0,667 0,667 0,667 0,667 28 0,628 0,628 0,628 0,628 38 0,588 0,588 0,587 0,444 0,704 0,704 48 0,547 0,546 0,544 0,707 0,505 0,503 0,501 56 0,463 0,461 0,458 0,744 0,421 0,417 91 0,387 0,384 0,380 0,384 0,380 0,384 58 0,354 0,351 0,346 0,241 0	08 0,808 0,808 0,808 0,808 0,808 0,805 0,805 0,805 0,805 0,805 0,803 0,803 0,803 0,803 0,803 0,802 0,602 0,602 0,	08 0,808 0,808 0,808 0,808 0,808 0,808 0,808 0,808 0,808 0,808 0,808 0,808 0,808 0,808 0,808 0,805 0,805 0,805 0,803 0,803 0,803 0,803 0,803 0,802 0,	08 0,808 0,	08 0,808 0,808 0,808 0,808 0,808 0,808 0,808 0,808 0,808 0,808 0,808 0,808 0,805 0,805 0,805 0,805 0,805 0,805 0,805 0,805 0,805 0,805 0,805 0,805 0,802 0,602 0,							

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

	für N	Nabenhöhe	n 118 m, 13	38 m, 148 m	n, 159 m un	d 164 m		
Windgeschwin- digkeit			Schubbeiv	verte c _τ be	i Luftdichte	$ ho$ [kg/m 3]		
v _H [m/s]	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820
5,5	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813
6,0	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808
6,5	0,805	0,805	0,805	0,805	0,805	0,805	0,805	0,805
7,0	0,803	0,803	0,803	0,803	0,803	0,804	0,803	0,803
7,5	0,802	0,802	0,802	0,801	0,801	0,800	0,798	0,795
8,0	0,790	0,790	0,790	0,788	0,785	0,783	0,778	0,774
8,5	0,768	0,768	0,768	0,765	0,760	0,756	0,750	0,744
9,0	0,738	0,738	0,738	0,734	0,728	0,723	0,716	0,709
9,5	0,704	0,703	0,703	0,698	0,691	0,684	0,676	0,668
10,0	0,664	0,662	0,660	0,654	0,646	0,639	0,630	0,621
10,5	0,620	0,617	0,614	0,608	0,599	0,591	0,582	0,573
11,0	0,573	0,570	0,566	0,559	0,551	0,542	0,533	0,524
11,5	0,527	0,522	0,519	0,511	0,502	0,494	0,484	0,475
12,0	0,480	0,476	0,471	0,464	0,455	0,446	0,437	0,428
12,5	0,435	0,430	0,426	0,418	0,409	0,401	0,392	0,384
13,0	0,392	0,388	0,383	0,376	0,368	0,360	0,352	0,345
13,5	0,354	0,349	0,344	0,338	0,331	0,324	0,317	0,310
14,0	0,320	0,315	0,310	0,304	0,297	0,291	0,285	0,279
14,5	0,289	0,284	0,279	0,273	0,267	0,262	0,256	0,251
15,0	0,261	0,256	0,251	0,246	0,241	0,235	0,230	0,226
15,5	0,236	0,231	0,226	0,221	0,216	0,212	0,207	0,203
16,0	0,213	0,208	0,204	0,199	0,195	0,191	0,187	0,184
16,5	0,193	0,189	0,185	0,181	0,177	0,174	0,170	0,167
17,0	0,177	0,173	0,169	0,166	0,162	0,159	0,156	0,153
17,5	0,163	0,159	0,156	0,153	0,150	0,147	0,144	0,141
18,0	0,151	0,148	0,145	0,142	0,139	0,137	0,134	0,132
18,5	0,141	0,138	0,136	0,133	0,130	0,128	0,125	0,123
19,0	0,133	0,130	0,128	0,125	0,123	0,120	0,118	0,116
19,5	0,126	0,123	0,121	0,118	0,116	0,114	0,112	0,110
20,0	0,120	0,117	0,115	0,113	0,111	0,109	0,107	0,105
20,5*	0,108	0,105	0,103	0,102	0,100	0,098	0,096	0,094
21,0*	0,097	0,095	0,093	0,092	0,090	0,088	0,087	0,085
21,5*	0,087	0,085	0,084	0,082	0,081	0,079	0,078	0,077
22,0*	0,078	0,077	0,075	0,074	0,073	0,071	0,070	0,069
22,5*	0,070	0,069	0,067	0,066	0,065	0,064	0,063	0,062
23,0*	0,063	0,061	0,060	0,059	0,058	0,057	0,056	0,055
23,5*	0,056	0,055	0,054	0,053	0,052	0,051	0,050	0,049
24,0*	0,051	0,049	0,048	0,048	0,047	0,046	0,045	0,044
24,5*	0,045	0,044	0,044	0,043	0,042	0,041	0,041	0,040
25,0*	0,041	0,040	0,040	0,039	0,038	0,037	0,037	0,036
25,5*	0,038	0,037	0,036	0,036	0,035	0,034	0,034	0,033
26,0*	0,035	0,034	0,034	0,033	0,033	0,032	0,031	0,031

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

		für Naben	ıhöhen 118	m, 138 m,	148 m, 159	m und 164	ł m		
Windgeschwin- digkeit			Schu	bbeiwerte	c _⊤ bei Lufto	lichte $ ho$ [kg	/m³]		
v _H [m/s]	0,900	0,925	0,950	0,975	1,000	1,025	1,050	1,075	1,100
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820
5,5	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813
6,0	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808
6,5	0,805	0,805	0,805	0,805	0,805	0,805	0,805	0,805	0,805
7,0	0,803	0,803	0,803	0,803	0,803	0,803	0,803	0,803	0,803
7,5	0,800	0,800	0,800	0,800	0,800	0,800	0,800	0,800	0,800
8,0	0,785	0,785	0,785	0,785	0,785	0,785	0,785	0,785	0,785
8,5	0,760	0,760	0,760	0,760	0,760	0,760	0,760	0,760	0,760
9,0	0,729	0,729	0,729	0,729	0,729	0,729	0,729	0,729	0,729
9,5	0,693	0,693	0,693	0,693	0,693	0,693	0,693	0,693	0,693
10,0	0,654	0,654	0,654	0,654	0,654	0,654	0,654	0,654	0,653
10,5	0,614	0,614	0,614	0,614	0,614	0,614	0,613	0,612	0,610
11,0	0,574	0,574	0,574	0,573	0,572	0,571	0,569	0,567	0,564
11,5	0,534	0,533	0,532	0,531	0,529	0,526	0,524	0,521	0,518
12,0	0,493	0,491	0,489	0,487	0,485	0,482	0,479	0,475	0,472
12,5	0,452	0,450	0,448	0,445	0,442	0,438	0,435	0,473	0,427
13,0	0,414	0,411	0,408	0,405	0,402	0,398	0,394	0,391	0,386
13,5	0,379	0,376	0,373	0,370	0,366	0,362	0,358	0,354	0,349
14,0	0,348	0,345	0,341	0,337	0,333	0,329	0,325	0,334	0,316
14,5	0,319	0,316	0,312	0,308	0,304	0,300	0,296	0,321	0,287
15,0	0,293	0,290	0,286	0,282	0,278	0,273	0,269	0,265	0,260
15,5	0,270	0,266	0,262	0,258	0,253	0,249	0,245	0,240	0,236
16,0	0,248	0,244	0,240	0,236	0,233	0,243	0,243	0,240	0,214
16,5	0,229	0,244	0,240	0,230	0,232	0,208	0,223	0,199	0,194
17,0	0,212	0,208	0,204	0,200	0,195	0,191	0,186	0,182	0,178
17,5	0,198	0,193	0,189	0,185	0,180	0,176	0,171	0,167	0,164
18,0	0,185	0,193	0,189	0,183	0,167	0,170	0,171	0,157	0,152
18,5	0,173	0,169	0,164	0,160	0,156	0,152	0,133	0,135	0,132
19,0	0,163	0,158	0,154	0,150	0,136	0,132	0,140	0,145	0,142
19,5	0,154	0,150	0,146		0,140	0,135	0,132	0,130	0,135
				0,142					
20,0 20,5*	0,146 0,131	0,142 0,128	0,138 0,124	0,135 0,121	0,132 0,119	0,129 0,116	0,126 0,113	0,123 0,111	0,120 0,108
21,0*	0,131	0,128	0,124	0,121	0,119	0,110	0,113	0,111	0,108
21,5* 22,0*	0,106	0,104	0,101	0,098	0,096	0,094	0,092	0,090 0,080	0,087
22,0*	0,095	0,093	0,090	0,088	0,086	0,084	0,082		0,078
23,0*	0,086 0,077	0,083 0,074	0,081 0,072	0,079	0,077 0,069	0,076	0,074 0,066	0,072 0,064	0,070 0,063
				0,071		0,068			
23,5*	0,068	0,067	0,065	0,063	0,062	0,061	0,059	0,058	0,056
24,0*	0,061	0,060	0,058	0,057	0,056	0,054	0,053	0,052	0,051
24,5*	0,055	0,054	0,052	0,051	0,050	0,049	0,048	0,047	0,045
25,0*	0,050	0,049	0,047	0,046	0,045	0,044	0,043	0,042	0,041
25,5*	0,046	0,045	0,043	0,043	0,042	0,041	0,040	0,039	0,038
26,0*	0,043	0,042	0,041	0,040	0,039	0,038	0,037	0,036	0,035

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

für Nabenhöhen 118 m, 138 m, 148 m, 159 m und 164 m										
Windgeschwin- digkeit			Schubbeiv	verte c _T be	i Luftdichte	$ ho$ [kg/m 3]				
v _H [m/s]	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300		
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872		
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860		
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845		
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831		
5,0	0,820	0,831	0,831	0,831	0,831	0,831	0,831	0,820		
5,5	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813		
6,0	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808		
6,5	0,805	0,805	0,805	0,805	0,805	0,805	0,805	0,805		
7,0	0,803	0,803	0,803	0,803	0,803	0,803	0,803	0,803		
7,5	0,800	0,800	0,800	0,800	0,803	0,803	0,803	0,803		
8,0	0,785	0,785	0,785	0,785	0,785	0,782	0,738	0,733		
8,5	0,760			0,760	0,783					
		0,760	0,760			0,755	0,750	0,744		
9,0	0,729	0,729	0,729	0,729	0,728	0,722 0,682	0,716	0,709		
9,5	0,693	0,692	0,692	0,691 0,647	0,689		0,674	0,666		
10,0	0,653	0,651	0,649	,	0,643	0,636	0,628	0,619		
10,5	0,608	0,605	0,602	0,600	0,595	0,587	0,579	0,570		
11,0	0,561	0,558	0,555	0,551	0,547	0,538	0,530	0,521		
11,5	0,515	0,511	0,507	0,503	0,498	0,490	0,481	0,472		
12,0	0,468	0,464	0,460	0,456	0,450	0,442	0,433	0,424		
12,5	0,423	0,419	0,415	0,411	0,405	0,396	0,388	0,380		
13,0	0,382	0,378	0,373	0,369	0,363	0,356	0,348	0,341		
13,5	0,345	0,341	0,336	0,332	0,326	0,319	0,313	0,306		
14,0	0,312	0,307	0,303	0,298	0,293	0,287	0,281	0,275		
14,5	0,282	0,277	0,273	0,268	0,263	0,257	0,252	0,247		
15,0	0,255	0,251	0,246	0,241	0,236	0,231	0,226	0,222		
15,5	0,231	0,226	0,221	0,217	0,212	0,208	0,203	0,199		
16,0	0,209	0,204	0,200	0,195	0,191	0,187	0,184	0,180		
16,5	0,190	0,185	0,181	0,178	0,174	0,170	0,167	0,164		
17,0	0,173	0,170	0,166	0,163	0,159	0,156	0,153	0,150		
17,5	0,160	0,156	0,153	0,150	0,147	0,144	0,142	0,139		
18,0	0,148	0,145	0,142	0,139	0,137	0,134	0,132	0,129		
18,5	0,139	0,136	0,133	0,130	0,128	0,126	0,123	0,121		
19,0	0,131	0,128	0,125	0,123	0,120	0,118	0,116	0,114		
19,5	0,124	0,121	0,119	0,116	0,114	0,112	0,110	0,108		
20,0	0,118	0,115	0,113	0,111	0,109	0,107	0,105	0,103		
20,5*	0,106	0,103	0,102	0,100	0,098	0,096	0,094	0,093		
21,0*	0,096	0,093	0,092	0,090	0,088	0,087	0,085	0,083		
21,5*	0,086	0,084	0,082	0,081	0,079	0,078	0,077	0,075		
22,0*	0,077	0,075	0,074	0,073	0,071	0,070	0,069	0,067		
22,5*	0,069	0,067	0,066	0,065	0,064	0,063	0,062	0,060		
23,0*	0,062	0,060	0,059	0,058	0,057	0,056	0,055	0,054		
23,5*	0,055	0,054	0,053	0,052	0,051	0,050	0,049	0,048		
24,0*	0,050	0,048	0,048	0,047	0,046	0,045	0,044	0,043		
24,5*	0,045	0,044	0,043	0,042	0,041	0,041	0,040	0,039		
25,0*	0,041	0,040	0,039	0,038	0,037	0,037	0,036	0,035		
25,5*	0,037	0,036	0,036	0,035	0,034	0,034	0,033	0,032		
26,0*	0,035	0,034	0,033	0,033	0,032	0,031	0,031	0,030		

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

		für Naben	ıhöhen 118	m, 138 m,	148 m, 159	m und 164	m		
Windgeschwin- digkeit			Schu	bbeiwerte	c _⊤ bei Lufto	dichte $ ho$ [kg	/m³]		
v _H [m/s]	0,900	0,925	0,950	0,975	1,000	1,025	1,050	1,075	1,100
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820
5,5	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813
6,0	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808
6,5	0,805	0,805	0,805	0,805	0,805	0,805	0,805	0,805	0,805
7,0	0,803	0,803	0,803	0,803	0,803	0,803	0,803	0,803	0,803
7,5	0,795	0,795	0,795	0,795	0,795	0,795	0,795	0,795	0,795
8,0	0,776	0,776	0,776	0,776	0,776	0,776	0,776	0,776	0,776
8,5	0,747	0,747	0,747	0,747	0,747	0,747	0,747	0,747	0,747
9,0	0,712	0,712	0,712	0,712	0,712	0,712	0,712	0,712	0,712
9,5	0,674	0,674	0,674	0,674	0,674	0,674	0,674	0,674	0,674
10,0	0,634	0,634	0,634	0,634	0,634	0,634	0,634	0,634	0,634
10,5	0,593	0,593	0,593	0,593	0,593	0,593	0,592	0,591	0,590
11,0	0,552	0,552	0,552	0,551	0,551	0,550	0,548	0,546	0,544
11,5	0,511	0,511	0,510	0,509	0,507	0,505	0,503	0,500	0,498
12,0	0,471	0,469	0,468	0,466	0,464	0,461	0,458	0,456	0,452
12,5	0,432	0,430	0,428	0,425	0,422	0,420	0,416	0,430	0,410
13,0	0,396	0,393	0,391	0,388	0,385	0,382	0,378	0,375	0,371
13,5	0,363	0,360	0,357	0,354	0,351	0,382	0,344	0,340	0,371
14,0	0,333	0,330	0,337	0,324	0,320	0,317	0,313	0,309	0,305
14,5	0,307	0,303	0,300	0,296	0,292	0,289	0,285	0,383	0,303
15,0	0,387	0,279	0,275	0,271	0,267	0,263	0,259	0,255	0,251
15,5	0,260	0,256	0,273	0,249	0,245	0,241	0,236	0,232	0,231
16,0	0,239	0,236	0,232	0,243	0,224	0,220	0,216	0,232	0,220
16,5	0,233	0,217	0,232	0,210	0,206	0,202	0,197	0,193	0,189
17,0	0,205	0,202	0,198	0,194	0,189	0,185	0,137	0,177	0,173
17,5	0,191	0,187	0,183	0,179	0,175	0,171	0,167	0,163	0,159
18,0	0,179	0,175	0,171	0,167	0,163	0,159	0,155	0,151	0,148
18,5	0,168	0,164	0,160	0,156	0,152	0,148	0,135	0,141	0,138
19,0	0,158	0,154	0,150	0,136	0,143	0,139	0,136	0,133	0,130
19,5	0,150	0,146	0,130	0,138	0,135	0,133	0,130	0,135	0,133
20,0	0,130	0,139	0,142	0,138	0,133	0,132	0,123	0,120	0,123
20,5*	0,142	0,135	0,133	0,132	0,115	0,123	0,122	0,120	0,117
21,0*	0,125	0,123	0,121	0,113	0,113	0,112	0,099	0,108	0,105
21,5*	0,113	0,113	0,103	0,096	0,093	0,091	0,033	0,037	0,085
22,0*			0,038						
22,5*	0,093 0,083	0,091 0,081	0,088	0,086 0,077	0,084 0,075	0,082 0,073	0,080 0,071	0,078 0,070	0,077 0,069
23,0*	0,083	0,081	0,079	0,077	0,073	0,075	0,071	0,070	0,069
23,5*	0,074	0,075	0,071	0,069	0,067			0,056	0,055
24,0*	0,067	0,065	0,063	0,062	0,054	0,059 0,053	0,057 0,051	0,056	0,033
24,5*	0,054	0,059	0,057	0,050	0,034	0,053	0,031	0,051	0,049
25,0* 25,5*	0,049	0,048	0,046	0,045	0,044	0,043	0,042	0,041	0,040
26,0*	0,045 0,042	0,044 0,041	0,043 0,040	0,042 0,039	0,040 0,038	0,039 0,037	0,038 0,036	0,038 0,035	0,037 0,034

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

	für Nabenhöhen 118 m, 138 m, 148 m, 159 m und 164 m										
Windgeschwin- digkeit			Schubbeiv	verte c _⊤ be	i Luftdichte	$ ho$ [kg/m 3]					
v _H [m/s]	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300			
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872			
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860			
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845			
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831			
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820			
5,5	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813			
6,0	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808			
6,5	0,805	0,805	0,805	0,805	0,805	0,805	0,805	0,805			
7,0	0,803	0,803	0,803	0,803	0,803	0,803	0,803	0,803			
7,5	0,795	0,795	0,795	0,795	0,795	0,795	0,795	0,795			
8,0	0,776	0,776	0,776	0,776	0,776	0,776	0,776	0,774			
8,5	0,747	0,747	0,747	0,747	0,747	0,747	0,747	0,744			
9,0	0,712	0,712	0,712	0,712	0,712	0,712	0,712	0,708			
9,5	0,674	0,674	0,674	0,673	0,672	0,671	0,669	0,664			
10,0	0,633	0,632	0,630	0,629	0,627	0,624	0,621	0,616			
10,5	0,588	0,586	0,584	0,581	0,578	0,575	0,572	0,566			
11,0	0,541	0,539	0,536	0,533	0,529	0,526	0,522	0,516			
11,5	0,495	0,492	0,488	0,485	0,481	0,477	0,473	0,467			
12,0	0,449	0,446	0,442	0,438	0,434	0,430	0,425	0,419			
12,5	0,406	0,402	0,398	0,394	0,390	0,385	0,381	0,375			
13,0	0,367	0,363	0,359	0,355	0,350	0,346	0,341	0,335			
13,5	0,332	0,328	0,324	0,319	0,315	0,310	0,306	0,300			
14,0	0,301	0,297	0,292	0,288	0,283	0,279	0,274	0,269			
14,5	0,272	0,268	0,264	0,259	0,255	0,250	0,246	0,241			
15,0	0,247	0,243	0,238	0,234	0,229	0,224	0,220	0,216			
15,5	0,224	0,220	0,215	0,211	0,206	0,202	0,198	0,194			
16,0	0,203	0,199	0,194	0,190	0,186	0,182	0,179	0,175			
16,5	0,185	0,180	0,177	0,173	0,169	0,166	0,163	0,159			
17,0	0,169	0,165	0,162	0,158	0,155	0,152	0,149	0,146			
17,5	0,156	0,152	0,149	0,146	0,143	0,140	0,138	0,135			
18,0	0,145	0,141	0,139	0,136	0,133	0,131	0,128	0,126			
18,5	0,135	0,132	0,130	0,127	0,125	0,122	0,120	0,118			
19,0	0,127	0,125	0,122	0,120	0,117	0,115	0,113	0,111			
19,5	0,120	0,118	0,116	0,113	0,111	0,109	0,107	0,105			
20,0	0,115	0,112	0,110	0,108	0,106	0,104	0,102	0,100			
20,5*	0,103	0,101	0,099	0,097	0,095	0,093	0,092	0,090			
21,0*	0,093	0,091	0,089	0,087	0,086	0,084	0,083	0,081			
21,5*	0,084	0,082	0,080	0,079	0,077	0,076	0,074	0,073			
22,0*	0,075	0,073	0,072	0,071	0,069	0,068	0,067	0,065			
22,5*	0,067	0,066	0,064	0,063	0,062	0,061	0,060	0,059			
23,0*	0,060	0,059	0,058	0,057	0,056	0,054	0,053	0,052			
23,5*	0,054	0,053	0,052	0,051	0,050	0,049	0,048	0,047			
24,0*	0,048	0,047	0,046	0,045	0,045	0,044	0,043	0,042			
24,5*	0,044	0,042	0,042	0,041	0,040	0,039	0,039	0,038			
25,0*	0,040	0,039	0,038	0,037	0,036	0,036	0,035	0,034			
25,5*	0,036	0,035	0,035	0,034	0,033	0,033	0,032	0,032			
26,0*	0,034	0,033	0,032	0,032	0,031	0,031	0,030	0,029			
20,0	0,034	0,033	0,032	0,032	0,031	0,031	0,030	0,029			

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

					m, 159 m ι fügbar für 1				
Windgeschwin- digkeit			Schu	ıbbeiwerte	c _⊤ bei Lufto	dichte $ ho$ [kg	g/m³]		
v _н [m/s]	0,900	0,925	0,950	0,975	1,000	1,025	1,050	1,075	1,100
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820
5,5	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813
6,0	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808
6,5	0,805	0,805	0,805	0,805	0,805	0,805	0,805	0,805	0,805
7,0	0,803	0,803	0,803	0,803	0,803	0,803	0,803	0,803	0,803
7,5	0,791	0,791	0,791	0,791	0,791	0,791	0,791	0,791	0,791
8,0	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768
8,5	0,736	0,736	0,736	0,736	0,736	0,736	0,736	0,736	0,736
9,0	0,699	0,699	0,699	0,699	0,699	0,699	0,699	0,699	0,699
9,5	0,659	0,659	0,659	0,659	0,659	0,659	0,659	0,659	0,659
10,0	0,617	0,617	0,617	0,617	0,617	0,617	0,617	0,617	0,617
10,5	0,575	0,575	0,575	0,575	0,575	0,575	0,575	0,574	0,573
11,0	0,533	0,533	0,533	0,533	0,533	0,532	0,530	0,529	0,527
11,5	0,492	0,492	0,491	0,490	0,489	0,487	0,485	0,483	0,481
12,0	0,452	0,451	0,450	0,448	0,446	0,444	0,441	0,439	0,436
12,5	0,414	0,413	0,411	0,409	0,406	0,404	0,401	0,398	0,395
13,0	0,380	0,378	0,376	0,373	0,370	0,367	0,364	0,361	0,357
13,5	0,349	0,347	0,344	0,341	0,338	0,335	0,331	0,328	0,324
14,0	0,321	0,318	0,315	0,312	0,309	0,305	0,302	0,298	0,294
14,5	0,295	0,292	0,289	0,286	0,282	0,279	0,275	0,271	0,267
15,0	0,272	0,269	0,265	0,262	0,258	0,255	0,251	0,247	0,243
15,5	0,251	0,247	0,244	0,240	0,237	0,233	0,229	0,225	0,221
16,0	0,231	0,228	0,224	0,221	0,217	0,213	0,209	0,205	0,201
16,5	0,214	0,211	0,207	0,203	0,199	0,196	0,192	0,188	0,184
17,0	0,199	0,195	0,192	0,188	0,184	0,180	0,176	0,172	0,168
17,5	0,186	0,182	0,178	0,174	0,170	0,166	0,163	0,159	0,155
18,0	0,174	0,170	0,166	0,162	0,158	0,154	0,151	0,147	0,144
18,5	0,163	0,160	0,156	0,152	0,148	0,144	0,141	0,138	0,135
19,0	0,154	0,150	0,146	0,142	0,139	0,136	0,132	0,129	0,127
19,5	0,146	0,142	0,138	0,135	0,131	0,128	0,125	0,123	0,120
20,0	0,139	0,135	0,131	0,128	0,125	0,122	0,119	0,117	0,114
20,5*	0,125	0,121	0,118	0,115	0,112	0,110	0,107	0,105	0,102
21,0*	0,113	0,109	0,106	0,104	0,101	0,099	0,096	0,095	0,092
21,5*	0,101	0,098	0,095	0,093	0,091	0,089	0,087	0,085	0,083
22,0*	0,091	0,088	0,086	0,084	0,082	0,080	0,078	0,077	0,075
22,5*	0,081	0,079	0,077	0,075	0,073	0,071	0,070	0,069	0,067
23,0*	0,073	0,071	0,069	0,067	0,066	0,064	0,062	0,061	0,060
23,5*	0,065	0,063	0,061	0,060	0,059	0,057	0,056	0,055	0,053
24,0*	0,059	0,057	0,055	0,054	0,053	0,051	0,050	0,049	0,048
24,5*	0,053	0,051	0,050	0,049	0,047	0,046	0,045	0,044	0,043
25,0*	0,048	0,046	0,045	0,044	0,043	0,042	0,041	0,040	0,039
25,5*	0,044	0,043	0,041	0,040	0,039	0,038	0,037	0,037	0,036
26,0*	0,041	0,040	0,039	0,038	0,037	0,036	0,035	0,034	0,034

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

	für Nabenhöhen 118 m, 148 m, 159 m und 164 m (Betriebsweise nicht verfügbar für 138 m)										
Windgeschwin- digkeit			Schubbeiv	verte c _T be	i Luftdichte	$ ho$ [kg/m 3]					
v _H [m/s]	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300			
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872			
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860			
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845			
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831			
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820			
5,5	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813			
6,0	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808			
6,5	0,805	0,805	0,805	0,805	0,805	0,805	0,805	0,805			
7,0	0,803	0,803	0,803	0,803	0,803	0,803	0,803	0,803			
7,5	0,791	0,791	0,791	0,791	0,791	0,791	0,791	0,791			
8,0	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768			
8,5	0,736	0,736	0,736	0,736	0,736	0,736	0,736	0,736			
9,0	0,699	0,699	0,699	0,699	0,699	0,699	0,699	0,698			
9,5	0,659	0,659	0,659	0,658	0,658	0,656	0,655	0,653			
10,0	0,616	0,616	0,614	0,613	0,611	0,609	0,606	0,604			
10,5	0,571	0,570	0,567	0,565	0,563	0,560	0,557	0,554			
11,0	0,525	0,522	0,520	0,517	0,514	0,510	0,507	0,503			
11,5	0,478	0,475	0,472	0,468	0,465	0,461	0,457	0,454			
12,0	0,432	0,429	0,426	0,422	0,419	0,415	0,411	0,407			
12,5	0,391	0,388	0,384	0,380	0,376	0,372	0,368	0,364			
13,0	0,354	0,350	0,346	0,342	0,338	0,334	0,330	0,326			
13,5	0,320	0,317	0,313	0,308	0,305	0,300	0,296	0,292			
14,0	0,290	0,287	0,282	0,278	0,274	0,270	0,265	0,261			
14,5	0,263	0,259	0,255	0,251	0,247	0,242	0,238	0,234			
15,0	0,239	0,235	0,231	0,227	0,223	0,218	0,214	0,209			
15,5	0,217	0,213	0,209	0,204	0,200	0,196	0,192	0,188			
16,0	0,197	0,193	0,189	0,185	0,181	0,177	0,174	0,170			
16,5	0,180	0,176	0,172	0,168	0,165	0,161	0,158	0,155			
17,0	0,164	0,161	0,157	0,154	0,151	0,148	0,145	0,142			
17,5	0,152	0,148	0,145	0,142	0,139	0,137	0,134	0,132			
18,0	0,141	0,138	0,135	0,132	0,130	0,127	0,125	0,122			
18,5	0,132	0,129	0,126	0,124	0,121	0,119	0,117	0,115			
19,0	0,124	0,121	0,119	0,117	0,114	0,112	0,110	0,108			
19,5	0,117	0,115	0,113	0,110	0,108	0,106	0,104	0,103			
20,0	0,112	0,109	0,107	0,105	0,103	0,101	0,100	0,098			
20,5*	0,101	0,098	0,096	0,094	0,093	0,091	0,090	0,088			
21,0*	0,091	0,088	0,087	0,085	0,083	0,082	0,081	0,079			
21,5*	0,082	0,079	0,078	0,077	0,075	0,074	0,073	0,071			
22,0*	0,073	0,071	0,070	0,069	0,067	0,066	0,065	0,064			
22,5*	0,066	0,064	0,063	0,062	0,060	0,059	0,059	0,057			
23,0*	0,059	0,057	0,056	0,055	0,054	0,053	0,052	0,051			
23,5*	0,053	0,051	0,050	0,049	0,048	0,047	0,047	0,046			
24,0*	0,047	0,046	0,045	0,044	0,043	0,043	0,042	0,041			
24,5*	0,042	0,041	0,041	0,040	0,039	0,038	0,038	0,037			
25,0*	0,039	0,037	0,037	0,036	0,035	0,035	0,034	0,034			
25,5*	0,035	0,034	0,034	0,033	0,032	0,032	0,032	0,031			
26,0*	0,033	0,032	0,031	0,031	0,030	0,030	0,029	0,029			

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

für Nabenhöhen 118 m, 148 m, 159 m und 164 m (Betriebsweise nicht verfügbar für 138 m)										
Windgeschwin- digkeit			Schu	ıbbeiwerte	c _⊤ bei Lufto	dichte $ ho$ [kg	g/m³]			
v _H [m/s]	0,900	0,925	0,950	0,975	1,000	1,025	1,050	1,075	1,100	
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872	
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860	
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845	
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831	
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820	
5,5	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813	
6,0	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808	
6,5	0,805	0,805	0,805	0,805	0,805	0,805	0,805	0,805	0,805	
7,0	0,800	0,800	0,800	0,800	0,800	0,800	0,800	0,800	0,800	
7,5	0,783	0,783	0,783	0,783	0,783	0,783	0,783	0,783	0,783	
8,0	0,756	0,756	0,756	0,756	0,756	0,756	0,756	0,756	0,756	
8,5	0,721	0,721	0,721	0,721	0,721	0,721	0,721	0,721	0,721	
9,0	0,682	0,682	0,682	0,682	0,682	0,682	0,682	0,682	0,682	
9,5	0,640	0,640	0,640	0,640	0,640	0,640	0,640	0,640	0,640	
10,0	0,597	0,597	0,597	0,597	0,597	0,597	0,597	0,597	0,597	
10,5	0,554	0,554	0,554	0,554	0,554	0,554	0,554	0,554	0,553	
11,0	0,512	0,512	0,512	0,512	0,512	0,511	0,510	0,509	0,507	
11,5	0,471	0,471	0,470	0,470	0,469	0,467	0,466	0,464	0,462	
12,0	0,432	0,432	0,431	0,429	0,428	0,426	0,424	0,421	0,419	
12,5	0,397	0,396	0,394	0,392	0,390	0,388	0,385	0,382	0,379	
13,0	0,364	0,363	0,361	0,359	0,356	0,353	0,351	0,347	0,344	
13,5	0,335	0,333	0,331	0,328	0,326	0,322	0,319	0,316	0,313	
14,0	0,308	0,306	0,304	0,301	0,298	0,295	0,291	0,288	0,284	
14,5	0,284	0,282	0,279	0,276	0,273	0,269	0,266	0,262	0,259	
15,0	0,262	0,259	0,256	0,253	0,250	0,246	0,243	0,239	0,236	
15,5	0,242	0,239	0,236	0,233	0,229	0,226	0,222	0,218	0,215	
16,0	0,224	0,221	0,217	0,214	0,211	0,207	0,203	0,200	0,196	
16,5	0,207	0,204	0,201	0,197	0,194	0,190	0,187	0,183	0,179	
17,0	0,193	0,190	0,186	0,183	0,179	0,176	0,172	0,168	0,164	
17,5	0,180	0,177	0,173	0,170	0,166	0,163	0,159	0,155	0,152	
18,0	0,169	0,166	0,162	0,158	0,155	0,151	0,147	0,144	0,141	
18,5	0,159	0,156	0,152	0,148	0,145	0,141	0,138	0,135	0,132	
19,0	0,150	0,147	0,143	0,139	0,136	0,133	0,130	0,127	0,124	
19,5	0,143	0,139	0,135	0,132	0,129	0,126	0,123	0,120	0,117	
20,0	0,136	0,132	0,129	0,125	0,122	0,119	0,117	0,114	0,112	
20,5*	0,122	0,119	0,116	0,112	0,110	0,107	0,105	0,102	0,101	
21,0*	0,110	0,107	0,104	0,101	0,099	0,096	0,095	0,092	0,091	
21,5*	0,099	0,096	0,094	0,091	0,089	0,087	0,085	0,083	0,082	
22,0*	0,089	0,086	0,084	0,082	0,080	0,078	0,077	0,075	0,073	
22,5*	0,080	0,077	0,076	0,073	0,071	0,070	0,069	0,067	0,066	
23,0*	0,071	0,069	0,068	0,066	0,064	0,062	0,061	0,060	0,059	
23,5*	0,064	0,062	0,061	0,059	0,057	0,056	0,055	0,053	0,053	
24,0*	0,057	0,056	0,054	0,053	0,051	0,050	0,049	0,048	0,047	
24,5*	0,052	0,050	0,049	0,047	0,046	0,045	0,044	0,043	0,042	
25,0*	0,047	0,045	0,044	0,043	0,042	0,041	0,040	0,039	0,039	
25,5*	0,043	0,042	0,041	0,039	0,038	0,037	0,037	0,036	0,035	
26,0*	0,040	0,039	0,038	0,037	0,036	0,035	0,034	0,034	0,033	

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

	für Nabenhöhen 118 m, 148 m, 159 m und 164 m (Betriebsweise nicht verfügbar für 138 m)										
Windgeschwin- digkeit			Schubbeiv	verte c _T be	i Luftdichte	$ ho$ [kg/m 3]					
v _H [m/s]	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300			
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872			
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860			
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845			
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831			
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820			
5,5	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813			
6,0	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808			
6,5	0,805	0,805	0,805	0,805	0,805	0,805	0,805	0,805			
7,0	0,800	0,800	0,800	0,800	0,800	0,800	0,800	0,800			
7,5	0,783	0,783	0,783	0,783	0,783	0,783	0,783	0,783			
8,0	0,756	0,756	0,756	0,756	0,756	0,756	0,756	0,756			
8,5	0,721	0,721	0,721	0,721	0,721	0,721	0,721	0,721			
9,0	0,682	0,682	0,682	0,682	0,682	0,682	0,682	0,682			
9,5	0,640	0,640	0,640	0,640	0,640	0,639	0,637	0,636			
10,0	0,597	0,597	0,596	0,594	0,593	0,591	0,589	0,587			
10,5	0,552	0,550	0,549	0,547	0,544	0,542	0,539	0,536			
11,0	0,505	0,503	0,501	0,498	0,496	0,493	0,490	0,486			
11,5	0,459	0,457	0,454	0,451	0,448	0,445	0,441	0,438			
12,0	0,416	0,413	0,410	0,406	0,403	0,400	0,396	0,392			
12,5	0,376	0,373	0,370	0,366	0,363	0,359	0,355	0,351			
13,0	0,341	0,338	0,334	0,330	0,327	0,323	0,319	0,315			
13,5	0,309	0,306	0,302	0,298	0,295	0,291	0,287	0,283			
14,0	0,281	0,277	0,274	0,270	0,266	0,262	0,258	0,254			
14,5	0,255	0,251	0,248	0,244	0,240	0,236	0,232	0,228			
15,0	0,232	0,228	0,224	0,220	0,216	0,213	0,208	0,204			
15,5	0,211	0,207	0,204	0,199	0,195	0,192	0,188	0,184			
16,0	0,192	0,188	0,185	0,181	0,177	0,173	0,170	0,166			
16,5	0,175	0,171	0,168	0,164	0,161	0,158	0,155	0,152			
17,0	0,161	0,157	0,154	0,151	0,148	0,145	0,142	0,139			
17,5	0,148	0,145	0,142	0,139	0,136	0,134	0,131	0,129			
18,0	0,138	0,135	0,132	0,129	0,127	0,124	0,122	0,120			
18,5	0,129	0,126	0,123	0,121	0,119	0,116	0,114	0,112			
19,0	0,121	0,119	0,116	0,114	0,112	0,110	0,108	0,106			
19,5	0,115	0,112	0,110	0,108	0,106	0,104	0,102	0,100			
20,0	0,109	0,107	0,105	0,103	0,101	0,099	0,097	0,096			
20,5*	0,098	0,096	0,094	0,093	0,091	0,089	0,087	0,086			
21,0*	0,088	0,087	0,085	0,083	0,082	0,080	0,079	0,078			
21,5*	0,079	0,078	0,077	0,075	0,074	0,072	0,071	0,070			
22,0*	0,071	0,070	0,069	0,067	0,066	0,065	0,063	0,063			
22,5*	0,064	0,063	0,062	0,060	0,059	0,058	0,057	0,056			
23,0*	0,057	0,056	0,055	0,054	0,053	0,052	0,051	0,050			
23,5*	0,051	0,050	0,049	0,048	0,047	0,046	0,045	0,045			
24,0*	0,046	0,045	0,044	0,043	0,043	0,042	0,041	0,040			
24,5*	0,041	0,041	0,040	0,039	0,038	0,038	0,037	0,036			
25,0*	0,037	0,037	0,036	0,035	0,035	0,034	0,033	0,033			
25,5*	0,034	0,034	0,033	0,032	0,032	0,031	0,031	0,030			
26,0*	0,032	0,031	0,031	0,030	0,030	0,029	0,029	0,028			

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

für Nabenhöhen 118 m und 164 m (Betriebsweise nicht verfügbar für 138 m, 148 m und 159 m)										
Windgeschwin- digkeit			Schu	bbeiwerte	c _⊤ bei Lufto	dichte $ ho$ [kg	;/m³]			
v _H [m/s]	0,900	0,925	0,950	0,975	1,000	1,025	1,050	1,075	1,100	
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872	
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860	
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845	
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831	
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820	
5,5	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813	
6,0	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808	
6,5	0,805	0,805	0,805	0,805	0,805	0,805	0,805	0,805	0,805	
7,0	0,796	0,796	0,796	0,796	0,796	0,796	0,796	0,796	0,796	
7,5	0,774	0,774	0,774	0,774	0,774	0,774	0,774	0,774	0,774	
8,0	0,742	0,742	0,742	0,742	0,742	0,742	0,742	0,742	0,742	
8,5	0,704	0,704	0,704	0,704	0,704	0,704	0,704	0,704	0,704	
9,0	0,662	0,662	0,662	0,662	0,662	0,662	0,662	0,662	0,662	
9,5	0,619	0,619	0,619	0,619	0,619	0,619	0,619	0,619	0,619	
10,0	0,575	0,575	0,575	0,575	0,575	0,575	0,575	0,575	0,575	
10,5	0,531	0,531	0,531	0,531	0,531	0,531	0,531	0,531	0,530	
11,0	0,488	0,488	0,488	0,488	0,488	0,487	0,487	0,486	0,484	
11,5	0,447	0,447	0,447	0,446	0,446	0,445	0,443	0,442	0,440	
12,0	0,409	0,409	0,409	0,408	0,407	0,405	0,403	0,401	0,399	
12,5	0,376	0,376	0,375	0,373	0,372	0,370	0,367	0,365	0,362	
13,0	0,346	0,345	0,344	0,342	0,340	0,338	0,335	0,332	0,329	
13,5	0,319	0,317	0,316	0,313	0,311	0,309	0,306	0,303	0,300	
14,0	0,294	0,292	0,290	0,288	0,285	0,282	0,279	0,276	0,273	
14,5	0,271	0,269	0,267	0,264	0,261	0,258	0,255	0,252	0,249	
15,0	0,250	0,248	0,246	0,243	0,240	0,237	0,234	0,230	0,227	
15,5	0,232	0,229	0,226	0,224	0,221	0,217	0,214	0,211	0,207	
16,0	0,214	0,212	0,209	0,206	0,203	0,200	0,196	0,193	0,190	
16,5	0,199	0,196	0,193	0,190	0,187	0,184	0,181	0,177	0,174	
17,0	0,186	0,183	0,180	0,177	0,173	0,170	0,167	0,163	0,160	
17,5	0,174	0,171	0,168	0,164	0,161	0,158	0,154	0,151	0,147	
18,0	0,163	0,160	0,157	0,154	0,150	0,147	0,143	0,140	0,137	
18,5	0,154	0,151	0,147	0,144	0,141	0,137	0,134	0,131	0,128	
19,0	0,146	0,142	0,139	0,136	0,132	0,129	0,126	0,123	0,120	
19,5	0,138	0,135	0,132	0,128	0,125	0,122	0,119	0,117	0,114	
20,0	0,132	0,129	0,125	0,122	0,119	0,116	0,114	0,111	0,109	
20,5*	0,119	0,116	0,112	0,110	0,107	0,104	0,102	0,100	0,098	
21,0*	0,107	0,104	0,101	0,099	0,096	0,094	0,092	0,090	0,088	
21,5*	0,096	0,094	0,091	0,089	0,087	0,085	0,083	0,081	0,079	
22,0*	0,086	0,084	0,082	0,080	0,078	0,076	0,075	0,073	0,071	
22,5*	0,077	0,076	0,073	0,071	0,070	0,068	0,067	0,065	0,064	
23,0*	0,069	0,068	0,066	0,064	0,062	0,061	0,060	0,058	0,057	
23,5*	0,062	0,061	0,059	0,057	0,056	0,054	0,053	0,052	0,051	
24,0*	0,056	0,054	0,053	0,051	0,050	0,049	0,048	0,047	0,046	
24,5*	0,050	0,049	0,047	0,046	0,045	0,044	0,043	0,042	0,041	
25,0*	0,045	0,044	0,043	0,042	0,041	0,040	0,039	0,038	0,037	
25,5*	0,042	0,041	0,039	0,038	0,037	0,037	0,036	0,035	0,034	
26,0*	0,039	0,038	0,037	0,036	0,035	0,034	0,034	0,033	0,032	

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

für Nabenhöhen 118 m und 164 m (Betriebsweise nicht verfügbar für 138 m, 148 m und 159 m)												
Windgeschwin- digkeit			Schubbeiv	verte c _T be	i Luftdichte	$ ho$ [kg/m 3]						
v _H [m/s]	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300				
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872				
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860				
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845				
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831				
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820				
5,5	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813				
6,0	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808				
6,5	0,805	0,805	0,805	0,805	0,805	0,805	0,805	0,805				
7,0	0,796	0,796	0,796	0,796	0,796	0,796	0,796	0,796				
7,5	0,774	0,774	0,774	0,774	0,774	0,774	0,774	0,774				
8,0	0,742	0,742	0,742	0,742	0,742	0,742	0,742	0,742				
8,5	0,704	0,704	0,704	0,704	0,704	0,704	0,704	0,704				
9,0	0,662	0,662	0,662	0,662	0,662	0,662	0,662	0,662				
9,5	0,619	0,619	0,619	0,619	0,618	0,618	0,617	0,616				
10,0	0,575	0,574	0,574	0,573	0,572	0,570	0,569	0,567				
10,5	0,529	0,528	0,527	0,525	0,523	0,521	0,519	0,516				
11,0	0,483	0,481	0,479	0,477	0,474	0,472	0,469	0,466				
11,5	0,438	0,436	0,433	0,431	0,428	0,425	0,422	0,419				
12,0	0,397	0,394	0,391	0,388	0,385	0,382	0,379	0,375				
12,5	0,360	0,357	0,354	0,351	0,347	0,344	0,341	0,337				
13,0	0,326	0,323	0,320	0,317	0,313	0,310	0,307	0,303				
13,5	0,297	0,293	0,290	0,287	0,283	0,280	0,276	0,272				
14,0	0,270	0,266	0,263	0,260	0,256	0,252	0,249	0,245				
14,5	0,245	0,242	0,238	0,235	0,231	0,228	0,224	0,220				
15,0	0,224	0,220	0,217	0,213	0,209	0,206	0,202	0,198				
15,5	0,204	0,200	0,197	0,193	0,190	0,186	0,182	0,179				
16,0	0,186	0,183	0,179	0,175	0,172	0,168	0,165	0,162				
16,5	0,170	0,167	0,163	0,160	0,156	0,153	0,150	0,147				
17,0	0,156	0,153	0,149	0,146	0,143	0,141	0,138	0,135				
17,5	0,144	0,141	0,138	0,135	0,132	0,130	0,127	0,125				
18,0	0,134	0,131	0,128	0,126	0,123	0,121	0,119	0,116				
18,5	0,125	0,123	0,120	0,118	0,115	0,113	0,111	0,109				
19,0	0,118	0,115	0,113	0,111	0,109	0,107	0,105	0,103				
19,5	0,112	0,109	0,107	0,105	0,103	0,101	0,099	0,098				
20,0	0,106	0,104	0,102	0,100	0,098	0,096	0,095	0,093				
20,5*	0,095	0,093	0,092	0,090	0,088	0,086	0,085	0,084				
21,0*	0,086	0,084	0,083	0,081	0,079	0,078	0,077	0,075				
21,5*	0,077	0,076	0,074	0,073	0,071	0,070	0,069	0,068				
22,0*	0,069	0,068	0,067	0,065	0,064	0,063	0,062	0,061				
22,5*	0,062	0,061	0,060	0,059	0,057	0,056	0,056	0,054				
23,0*	0,056	0,054	0,053	0,052	0,051	0,050	0,050	0,049				
23,5*	0,050	0,049	0,048	0,047	0,046	0,045	0,045	0,044				
24,0*	0,045	0,044	0,043	0,042	0,041	0,040	0,040	0,039				
24,5* 25,0*	0,040 0,036	0,039	0,039	0,038	0,037	0,036 0,033	0,036	0,035				
25,0* 25,5*	0,036	0,036 0,033	0,035 0,032	0,034 0,032	0,034 0,031	0,033	0,033 0,030	0,032 0,029				
26,0*	0,033	0,033	0,032	0,032	0,031	0,030	0,030	0,029				
20,0	0,031	0,031	0,030	0,029	0,029	0,020	0,020	0,027				

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

für Nabenhöhen 118 m und 164 m(Betriebsweise nicht verfügbar für 138 m. 148 m und 159 m; auf Anfrage für 118 m und 164 m

(Betriebsweise nicht verfügbar für 138 m, 148 m und 159 m; auf Anfrage für 118 m und 164 m)											
Windgeschwin- digkeit			Schu	ıbbeiwerte	c _⊤ bei Lufto	dichte $ ho$ [kg	;/m³]				
v _H [m/s]	0,900	0,925	0,950	0,975	1,000	1,025	1,050	1,075	1,100		
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0.872	0,872		
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860		
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845		
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831		
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820		
5,5	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813		
6,0	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808		
6,5	0,804	0,804	0,804	0,804	0,804	0,804	0,804	0,804	0,804		
7,0	0,790	0,790	0,790	0,790	0,790	0,790	0,790	0,790	0,790		
7,5	0,763	0,763	0,763	0,763	0,763	0,763	0,763	0,763	0,763		
8,0	0,728	0,728	0,728	0,728	0,728	0,728	0,728	0,728	0,728		
8,5	0,687	0,687	0,687	0,687	0,687	0,687	0,687	0,687	0,687		
9,0	0,644	0,644	0,644	0,644	0,644	0,644	0,644	0,644	0,644		
9,5	0,599	0,599	0,599	0,599	0,599	0,599	0,599	0,599	0,599		
10,0	0,553	0,553	0,553	0,553	0,553	0,553	0,553	0,553	0,553		
10,5	0,509	0,509	0,509	0,509	0,509	0,509	0,509	0,509	0,509		
11,0	0,465	0,465	0,465	0,465	0,465	0,465	0,465	0,464	0,464		
11,5	0,425	0,425	0,425	0,425	0,425	0,425	0,424	0,422	0,421		
12,0	0,390	0,390	0,390	0,390	0,389	0,387	0,386	0,384	0,382		
12,5	0,359	0,358	0,358	0,357	0,355	0,354	0,352	0,350	0,348		
13,0	0,331	0,330	0,329	0,327	0,326	0,324	0,321	0,319	0,317		
13,5	0,305	0,304	0,302	0,300	0,298	0,296	0,294	0,291	0,288		
14,0	0,281	0,280	0,278	0,276	0,274	0,271	0,269	0,266	0,263		
14,5	0,260	0,258	0,256	0,254	0,251	0,249	0,246	0,243	0,240		
15,0	0,240	0,238	0,236	0,234	0,231	0,229	0,226	0,223	0,220		
15,5	0,223	0,220	0,218	0,216	0,213	0,210	0,207	0,204	0,201		
16,0	0,206	0,204	0,201	0,199	0,196	0,193	0,190	0,187	0,184		
16,5	0,192	0,189	0,187	0,184	0,181	0,178	0,175	0,172	0,169		
17,0	0,179	0,176	0,174	0,171	0,168	0,165	0,162	0,159	0,156		
17,5	0,168	0,165	0,162	0,159	0,156	0,153	0,150	0,147	0,144		
18,0	0,158	0,155	0,152	0,149	0,146	0,143	0,140	0,137	0,134		
18,5	0,149	0,146	0,143	0,140	0,137	0,134	0,131	0,128	0,125		
19,0	0,141	0,138	0,135	0,132	0,129	0,126	0,123	0,120	0,118		
19,5	0,135	0,131	0,128	0,125	0,122	0,119	0,116	0,114	0,111		
20,0	0,129	0,125	0,122	0,119	0,116	0,114	0,111	0,108	0,106		
20,5*	0,116	0,112	0,110	0,107	0,104	0,102	0,100	0,097	0,095		
21,0*	0,104	0,101	0,099	0,096	0,094	0,092	0,090	0,087	0,086		
21,5*	0,094	0,091	0,089	0,087	0,085	0,083	0,081	0,079	0,077		
22,0*	0,084	0,082	0,080	0,078	0,076	0,075	0,073	0,071	0,069		
22,5*	0,076	0,073	0,071	0,070	0,068	0,067	0,065	0,063	0,062		
23,0*	0,068	0,066	0,064	0,062	0,061	0,060	0,058	0,057	0,056		
23,5*	0,061	0,059	0,057	0,056	0,054	0,053	0,052	0,051	0,050		
24,0*	0,054	0,053	0,051	0,050	0,049	0,048	0,047	0,045	0,045		
24,5*	0,049	0,047	0,046	0,045	0,044	0,043	0,042	0,041	0,040		
25,0*	0,044	0,043	0,042	0,041	0,040	0,039	0,038	0,037	0,036		
25,5*	0,041	0,039	0,038	0,037	0,037	0,036	0,035	0,034	0,033		
26,0*	0,038	0,037	0,036	0,035	0,034	0,034	0,033	0,032	0,031		

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

für Nabenhöhen 118 m und 164 m (Betriebsweise nicht verfügbar für 138 m, 148 m und 159 m; auf Anfrage für 118 m und 164 m)

(Betriebsweise nicht verfügbar für 138 m, 148 m und 159 m; auf Anfrage für 118 m und 164 m)												
Windgeschwin- digkeit	4.55-				i Luftdichte			4.000				
v _H [m/s]	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300				
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872				
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860				
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845				
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831				
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820				
5,5	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813				
6,0	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808				
6,5	0,804	0,804	0,804	0,804	0,804	0,804	0,804	0,804				
7,0	0,790	0,790	0,790	0,790	0,790	0,790	0,790	0,790				
7,5	0,763	0,763	0,763	0,763	0,763	0,763	0,763	0,763				
8,0	0,728	0,728	0,728	0,728	0,728	0,728	0,728	0,728				
8,5	0,687	0,687	0,687	0,687	0,687	0,687	0,687	0,687				
9,0	0,644	0,644	0,644	0,644	0,644	0,644	0,644	0,644				
9,5	0,599	0,599	0,599	0,599	0,599	0,598	0,598	0,597				
10,0	0,553	0,553	0,553	0,553	0,552	0,550	0,549	0,548				
10,5	0,508	0,507	0,506	0,505	0,503	0,501	0,499	0,497				
11,0	0,462	0,461	0,459	0,457	0,455	0,453	0,450	0,448				
11,5	0,419	0,417	0,415	0,413	0,410	0,408	0,405	0,402				
12,0	0,380	0,378	0,375	0,373	0,370	0,367	0,364	0,361				
12,5	0,345	0,343	0,340	0,337	0,334	0,331	0,328	0,325				
13,0	0,314	0,311	0,308	0,305	0,302	0,299	0,295	0,292				
13,5	0,285	0,283	0,279	0,276	0,273	0,270	0,266	0,263				
14,0	0,260	0,257	0,254	0,250	0,247	0,244	0,240	0,237				
14,5	0,237	0,234	0,231	0,227	0,224	0,221	0,217	0,214				
15,0	0,216	0,213	0,210	0,207	0,203	0,200	0,196	0,193				
15,5	0,198	0,194	0,191	0,188	0,184	0,181	0,177	0,174				
16,0	0,181	0,177	0,174	0,171	0,167	0,164	0,161	0,158				
16,5	0,166	0,162	0,159	0,156	0,152	0,149	0,146	0,144				
17,0	0,152	0,149	0,146	0,143	0,140	0,137	0,134	0,132				
17,5	0,141	0,137	0,135	0,132	0,129	0,127	0,124	0,122				
18,0	0,131	0,128	0,125	0,123	0,120	0,118	0,116	0,114				
18,5	0,122	0,120	0,117	0,115	0,113	0,110	0,108	0,106				
19,0	0,115	0,113	0,110	0,108	0,106	0,104	0,102	0,100				
19,5	0,109	0,107	0,105	0,103	0,101	0,099	0,097	0,095				
20,0	0,104	0,102	0,100	0,098	0,096	0,094	0,092	0,091				
20,5*	0,093	0,092	0,090	0,088	0,086	0,085	0,083	0,082				
21,0*	0,084	0,083	0,081	0,079	0,078	0,076	0,075	0,074				
21,5*	0,076	0,074	0,073	0,071	0,070	0,069	0,067	0,066				
22,0*	0,068	0,067	0,065	0,064	0,063	0,061	0,060	0,060				
22,5*	0,061	0,060	0,059	0,057	0,056	0,055	0,054	0,053				
23,0*	0,054	0,053	0,052	0,051	0,050	0,049	0,048	0,048				
23,5*	0,049	0,048	0,047	0,046	0,045	0,044	0,043	0,043				
24,0*	0,044	0,043	0,042	0,041	0,040	0,040	0,039	0,038				
24,5*	0,039	0,039	0,038	0,037	0,036	0,036	0,035	0,034				
25,0*	0,036	0,035	0,034	0,034	0,033	0,032	0,032	0,031				
25,5*	0,033	0,032	0,032	0,031	0,030	0,030	0,029	0,029				
26,0*	0,031	0,030	0,029	0,029	0,028	0,028	0,027	0,027				

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

für Nabenhöhen 118 m und 164 m (Betriebsweise nicht verfügbar für 138 m, 148 m und 159 m; auf Anfrage für 118 m und 164 m)

(Betriebsweise nicht verfügbar für 138 m, 148 m und 159 m; auf Anfrage für 118 m und 164 m)												
Windgeschwin- digkeit						dichte $ ho$ [kg	-					
v _H [m/s]	0,900	0,925	0,950	0,975	1,000	1,025	1,050	1,075	1,100			
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872			
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860			
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845			
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831			
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820			
5,5	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813			
6,0	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808			
6,5	0,802	0,802	0,802	0,802	0,802	0,802	0,802	0,802	0,802			
7,0	0,784	0,784	0,784	0,784	0,784	0,784	0,784	0,784	0,784			
7,5	0,754	0,754	0,754	0,754	0,754	0,754	0,754	0,754	0,754			
8,0	0,716	0,716	0,716	0,716	0,716	0,716	0,716	0,716	0,716			
8,5	0,673	0,673	0,673	0,673	0,673	0,673	0,673	0,673	0,673			
9,0	0,628	0,628	0,628	0,628	0,628	0,628	0,628	0,628	0,628			
9,5	0,582	0,582	0,582	0,582	0,582	0,582	0,582	0,582	0,582			
10,0	0,536	0,536	0,536	0,536	0,536	0,536	0,536	0,536	0,536			
10,5	0,491	0,491	0,491	0,491	0,491	0,491	0,491	0,491	0,491			
11,0	0,448	0,448	0,448	0,448	0,448	0,448	0,448	0,448	0,447			
11,5	0,410	0,410	0,410	0,410	0,410	0,409	0,409	0,408	0,406			
12,0	0,376	0,376	0,376	0,375	0,375	0,374	0,373	0,371	0,370			
12,5	0,346	0,345	0,345	0,344	0,343	0,342	0,340	0,338	0,336			
13,0	0,319	0,318	0,317	0,316	0,314	0,313	0,311	0,309	0,306			
13,5	0,294	0,293	0,292	0,290	0,288	0,287	0,284	0,282	0,280			
14,0	0,272	0,270	0,269	0,267	0,265	0,263	0,260	0,258	0,255			
14,5	0,251	0,250	0,248	0,246	0,244	0,241	0,239	0,236	0,233			
15,0	0,233	0,231	0,229	0,227	0,224	0,222	0,219	0,216	0,214			
15,5	0,216	0,214	0,211	0,209	0,207	0,204	0,201	0,199	0,196			
16,0	0,200	0,198	0,196	0,193	0,191	0,188	0,185	0,182	0,179			
16,5	0,186	0,184	0,181	0,179	0,176	0,174	0,171	0,168	0,165			
17,0	0,174	0,171	0,169	0,166	0,164	0,161	0,158	0,155	0,152			
17,5	0,163	0,160	0,158	0,155	0,153	0,150	0,147	0,144	0,141			
18,0	0,153	0,151	0,148	0,145	0,143	0,140	0,137	0,134	0,131			
18,5	0,145	0,142	0,140	0,137	0,134	0,131	0,128	0,125	0,122			
19,0	0,138	0,135	0,132	0,129	0,126	0,123	0,120	0,118	0,115			
19,5	0,131	0,129	0,126	0,123	0,120	0,117	0,114	0,111	0,109			
20,0	0,126	0,123	0,120	0,117	0,114	0,111	0,109	0,106	0,104			
20,5*	0,113	0,111	0,108	0,105	0,102	0,100	0,098	0,095	0,093			
21,0*	0,102	0,100	0,097	0,095	0,092	0,090	0,088	0,086	0,084			
21,5*	0,092	0,090	0,087	0,085	0,083	0,081	0,079	0,077	0,076			
22,0*	0,082	0,080	0,078	0,077	0,075	0,073	0,071	0,069	0,068			
22,5*	0,074	0,072	0,070	0,069	0,067	0,065	0,064	0,062	0,061			
23,0*	0,066	0,064	0,063	0,061	0,060	0,058	0,057	0,056	0,054			
23,5*	0,059	0,058	0,056	0,055	0,053	0,052	0,051	0,050	0,049			
24,0*	0,053	0,052	0,051	0,049	0,048	0,047	0,046	0,045	0,044			
24,5*	0,048	0,047	0,045	0,044	0,043	0,042	0,041	0,040	0,039			
25,0*	0,043	0,042	0,041	0,040	0,039	0,038	0,037	0,036	0,036			
25,5*	0,040	0,039	0,038	0,037	0,036	0,035	0,034	0,033	0,033			
26,0*	0,037	0,036	0,035	0,034	0,034	0,033	0,032	0,031	0,031			

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

für Nabenhöhen 118 m und 164 m (Betriebsweise nicht verfügbar für 138 m, 148 m und 159 m; auf Anfrage für 118 m und 164 m)

(Betriebswe	eise nicht ve	erfugbar für	138 m, 148	s m und 159	m; aut An	trage tur 11	.8 m und 16	94 m)
Windgeschwin- digkeit			Schubbeiv	verte c _τ be	i Luftdichte	$ ho$ [kg/m 3]		
v _H [m/s]	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820
5,5	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813
6,0	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808
6,5	0,802	0,802	0,802	0,802	0,802	0,802	0,802	0,802
7,0	0,784	0,784	0,784	0,784	0,784	0,784	0,784	0,784
7,5	0,754	0,754	0,754	0,754	0,754	0,754	0,754	0,754
8,0	0,716	0,716	0,716	0,716	0,716	0,716	0,716	0,716
8,5	0,673	0,673	0,673	0,673	0,673	0,673	0,673	0,673
9,0	0,628	0,628	0,628	0,628	0,628	0,628	0,628	0,628
9,5	0,582	0,582	0,582	0,582	0,582	0,582	0,582	0,581
10,0	0,536	0,536	0,536	0,536	0,535	0,534	0,533	0,532
10,5	0,491	0,490	0,489	0,488	0,487	0,485	0,483	0,482
11,0	0,446	0,445	0,443	0,442	0,440	0,438	0,435	0,433
11,5	0,405	0,403	0,401	0,399	0,397	0,394	0,392	0,389
12,0	0,367	0,365	0,363	0,361	0,358	0,355	0,353	0,350
12,5	0,334	0,332	0,329	0,326	0,324	0,321	0,318	0,315
13,0	0,304	0,301	0,299	0,296	0,293	0,290	0,287	0,284
13,5	0,277	0,274	0,271	0,268	0,265	0,262	0,259	0,256
14,0	0,252	0,249	0,247	0,243	0,240	0,237	0,234	0,231
14,5	0,230	0,227	0,224	0,221	0,218	0,215	0,212	0,208
15,0	0,211	0,208	0,204	0,201	0,198	0,195	0,192	0,188
15,5 16,0	0,193 0,176	0,190 0,173	0,186 0,170	0,183 0,167	0,180 0,164	0,177 0,160	0,173 0,157	0,170 0,154
16,5	0,162	0,159	0,155	0,152	0,149	0,146	0,137	0,134
17,0	0,149	0,133	0,133	0,132	0,143	0,134	0,132	0,140
17,5	0,138	0,135	0,132	0,129	0,126	0,124	0,132	0,119
18,0	0,138	0,135	0,132	0,120	0,118	0,115	0,113	0,111
18,5	0,120	0,117	0,115	0,112	0,110	0,108	0,106	0,104
19,0	0,113	0,110	0,108	0,106	0,104	0,102	0,100	0,098
19,5	0,107	0,104	0,102	0,100	0,098	0,097	0,095	0,093
20,0	0,102	0,100	0,098	0,096	0,094	0,092	0,090	0,089
20,5*	0,092	0,090	0,088	0,086	0,085	0,083	0,081	0,080
21,0*	0,083	0,081	0,079	0,078	0,076	0,075	0,073	0,072
21,5*	0,074	0,073	0,071	0,070	0,069	0,067	0,066	0,065
22,0*	0,067	0,065	0,064	0,063	0,061	0,060	0,059	0,058
22,5*	0,060	0,059	0,057	0,056	0,055	0,054	0,053	0,052
23,0*	0,053	0,052	0,051	0,050	0,049	0,048	0,047	0,047
23,5*	0,048	0,047	0,046	0,045	0,044	0,043	0,042	0,042
24,0*	0,043	0,042	0,041	0,040	0,040	0,039	0,038	0,037
24,5*	0,039	0,038	0,037	0,036	0,036	0,035	0,034	0,034
25,0*	0,035	0,034	0,034	0,033	0,032	0,032	0,031	0,031
25,5*	0,032	0,032	0,031	0,030	0,030	0,029	0,028	0,028
26,0*	0,030	0,029	0,029	0,028	0,028	0,027	0,026	0,026

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

für Nabenhöhen 118 m, 138 m, 148 m, 159 m und 164 m (Betriebsweise auf Anfrage für 118 m, 138 m, 148 m, 159 m und 164 m)												
Windgeschwin- digkeit			Schu	ıbbeiwerte	c _⊤ bei Lufto	dichte $ ho$ [kg	;/m³]					
v _H [m/s]	1,100	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300			
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872			
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860			
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845			
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831			
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820			
5,5	0,814	0,814	0,814	0,814	0,814	0,814	0,814	0,814	0,814			
6,0	0,803	0,803	0,803	0,803	0,803	0,803	0,803	0,803	0,803			
6,5	0,776	0,776	0,776	0,776	0,776	0,776	0,776	0,776	0,776			
7,0	0,737	0,737	0,737	0,737	0,737	0,737	0,737	0,737	0,737			
7,5	0,692	0,692	0,692	0,692	0,692	0,692	0,692	0,692	0,692			
8,0	0,643	0,643	0,643	0,643	0,643	0,643	0,643	0,643	0,643			
8,5	0,592	0,592	0,592	0,592	0,592	0,592	0,592	0,592	0,592			
9,0	0,541	0,541	0,541	0,541	0,541	0,541	0,541	0,541	0,541			
9,5	0,491	0,491	0,491	0,491	0,491	0,491	0,491	0,491	0,491			
10,0	0,444	0,444	0,444	0,444	0,444	0,444	0,444	0,444	0,444			
10,5	0,402	0,402	0,402	0,402	0,402	0,402	0,401	0,401	0,400			
11,0	0,365	0,365	0,365	0,365	0,365	0,364	0,363	0,362	0,361			
11,5	0,334	0,334	0,333	0,332	0,331	0,330	0,329	0,328	0,326			
12,0	0,305	0,305	0,304	0,303	0,301	0,300	0,299	0,297	0,295			
12,5	0,279	0,278	0,277	0,276	0,275	0,273	0,271	0,269	0,267			
13,0	0,256	0,255	0,254	0,252	0,250	0,249	0,247	0,245	0,243			
13,5	0,235	0,234	0,232	0,231	0,229	0,227	0,225	0,223	0,221			
14,0	0,216	0,215	0,213	0,211	0,209	0,207	0,205	0,203	0,201			
14,5	0,199	0,197	0,195	0,194	0,192	0,190	0,187	0,185	0,183			
15,0	0,183	0,182	0,180	0,178	0,175	0,173	0,171	0,169	0,166			
15,5	0,169	0,167	0,165	0,163	0,161	0,159	0,156	0,154	0,152			
16,0	0,156	0,154	0,152	0,150	0,148	0,145	0,143	0,141	0,138			
16,5	0,144	0,142	0,140	0,138	0,136	0,134	0,131	0,129	0,127			
17,0	0,134	0,132	0,130	0,128	0,125	0,123	0,121	0,119	0,116			
17,5	0,125	0,123	0,121	0,119	0,116	0,114	0,112	0,110	0,108			
18,0	0,117	0,115	0,113	0,111	0,108	0,106	0,104	0,102	0,100			
18,5	0,110	0,108	0,106	0,104	0,101	0,099	0,098	0,096	0,094			
19,0	0,104	0,102	0,100	0,098	0,096	0,094	0,092	0,090	0,089			
19,5	0,099	0,097	0,094	0,093	0,091	0,089	0,087	0,086	0,084			
20,0	0,094	0,092	0,090	0,088	0,087	0,085	0,083	0,082	0,080			
20,5*	0,085	0,083	0,081	0,079	0,078	0,076	0,075	0,074	0,072			
21,0*	0,076	0,075	0,073	0,071	0,070	0,069	0,067	0,066	0,065			
21,5*	0,069	0,067	0,066	0,064	0,063	0,062	0,061	0,060	0,058			
22,0*	0,061	0,060	0,059	0,058	0,057	0,056	0,054	0,054	0,052			
22,5*	0,055	0,054	0,053	0,052	0,051	0,050	0,049	0,048	0,047			
23,0*	0,049	0,048	0,047	0,046	0,046	0,045	0,043	0,043	0,042			
23,5*	0,044	0,043	0,042	0,041	0,041	0,040	0,039	0,038	0,038			
24,0*	0,040	0,039	0,038	0,037	0,037	0,036	0,035	0,035	0,034			
24,5*	0,036	0,035	0,034	0,033	0,033	0,032	0,031	0,031	0,030			
25,0*	0,032	0,032	0,031	0,030	0,030	0,029	0,029	0,028	0,028			
25,5*	0,030	0,029	0,028	0,028	0,027	0,027	0,026	0,026	0,025			
26,0*	0,028	0,027	0,026	0,026	0,026	0,025	0,024	0,024	0,024			

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

für Nabenhöhen 118 m, 138 m, 148 m, 159 m und 164 m (Betriebsweise auf Anfrage für 118 m, 138 m, 148 m, 159 m und 164 m)												
Windgeschwin- digkeit			Schu	bbeiwerte	c _⊤ bei Lufto	dichte $ ho$ [kg	g/m³]					
v _H [m/s]	1,100	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300			
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872			
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860			
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845			
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831			
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820			
5,5	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813	0,813			
6,0	0,800	0,800	0,800	0,800	0,800	0,800	0,800	0,800	0,800			
6,5	0,769	0,769	0,769	0,769	0,769	0,769	0,769	0,769	0,769			
7,0	0,728	0,728	0,728	0,728	0,728	0,728	0,728	0,728	0,728			
7,5	0,681	0,681	0,681	0,681	0,681	0,681	0,681	0,681	0,681			
8,0	0,630	0,630	0,630	0,630	0,630	0,630	0,630	0,630	0,630			
8,5	0,578	0,578	0,578	0,578	0,578	0,578	0,578	0,578	0,578			
9,0	0,527	0,527	0,527	0,527	0,527	0,527	0,527	0,527	0,527			
9,5	0,477	0,477	0,477	0,477	0,477	0,477	0,477	0,477	0,477			
10,0	0,430	0,430	0,430	0,430	0,430	0,430	0,430	0,430	0,430			
10,5	0,389	0,389	0,389	0,389	0,389	0,389	0,389	0,389	0,388			
11,0	0,354	0,354	0,354	0,354	0,354	0,353	0,352	0,352	0,351			
11,5	0,323	0,323	0,323	0,322	0,322	0,321	0,320	0,318	0,317			
12,0	0,296	0,295	0,295	0,294	0,293	0,292	0,290	0,289	0,287			
12,5	0,271	0,270	0,269	0,268	0,267	0,265	0,264	0,262	0,260			
13,0	0,249	0,248	0,247	0,245	0,244	0,242	0,240	0,239	0,237			
13,5	0,229	0,227	0,226	0,224	0,223	0,221	0,219	0,217	0,215			
14,0	0,211	0,209	0,207	0,206	0,204	0,202	0,200	0,198	0,196			
14,5	0,194	0,192	0,191	0,189	0,187	0,185	0,183	0,181	0,179			
15,0	0,179	0,177	0,175	0,173	0,171	0,169	0,167	0,165	0,163			
15,5	0,165	0,163	0,161	0,159	0,157	0,155	0,153	0,151	0,149			
16,0	0,152	0,150	0,148	0,146	0,144	0,142	0,140	0,138	0,136			
16,5	0,141	0,139	0,137	0,135	0,133	0,131	0,129	0,126	0,124			
17,0	0,131	0,129	0,127	0,125	0,123	0,121	0,119	0,116	0,114			
17,5	0,123	0,120	0,118	0,116	0,114	0,112	0,110	0,108	0,106			
18,0	0,115	0,113	0,111	0,109	0,106	0,104	0,102	0,100	0,099			
18,5	0,108	0,106	0,104	0,102	0,100	0,098	0,096	0,094	0,092			
19,0 19,5	0,102	0,100	0,098	0,096	0,094	0,092	0,090	0,089	0,087			
20,0	0,097 0,092	0,095 0,090	0,093 0,089	0,091 0,087	0,089 0,085	0,087 0,083	0,086 0,082	0,084 0,080	0,083 0,079			
20,5*	0,032	0,030	0,089	0,087	0,083	0,083	0,082	0,080	0,073			
21,0*	0,085	0,031	0,030	0,078	0,069	0,073	0,066	0,065	0,064			
21,5*	0,067	0,066	0,065	0,063	0,062	0,061	0,060	0,058	0,058			
22,0*	0,060	0,059	0,058	0,057	0,056	0,054	0,054	0,052	0,052			
22,5*	0,054	0,053	0,052	0,051	0,050	0,049	0,048	0,032	0,032			
23,0*	0,048	0,047	0,032	0,046	0,045	0,043	0,043	0,042	0,041			
23,5*	0,043	0,047	0,047	0,041	0,040	0,039	0,038	0,038	0,041			
24,0*	0,039	0,038	0,037	0,037	0,036	0,035	0,035	0,034	0,037			
24,5*	0,035	0,034	0,034	0,037	0,032	0,033	0,033	0,030	0,030			
25,0*	0,032	0,031	0,031	0,030	0,029	0,029	0,028	0,028	0,027			
25,5*	0,029	0,028	0,028	0,027	0,027	0,026	0,026	0,025	0,025			
26,0*	0,027	0,026	0,026	0,026	0,025	0,024	0,024	0,024	0,023			

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

		für Naben	nhöhen 118	m, 138 m,	148 m, 159	m und 164	m		
Windgeschwin- digkeit			Schu	ıbbeiwerte	c _⊤ bei Lufto	dichte $ ho$ [kg	;/m³]		
v _H [m/s]	1,100	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831
5,0	0,820	0,820	0,831	0,820	0,831	0,831	0,820	0,831	0,831
5,5	0,812	0,812	0,812	0,812	0,812	0,812	0,812	0,812	0,812
6,0	0,792	0,792	0,792	0,792	0,792	0,792	0,792	0,792	0,792
6,5	0,755	0,755	0,755	0,755	0,755	0,755	0,755	0,755	0,755
7,0	0,709	0,709	0,709	0,709	0,709	0,709	0,709	0,709	0,709
7,5	0,659	0,659	0,659	0,659	0,659	0,659	0,659	0,659	0,659
8,0	0,606	0,606	0,606	0,606	0,606	0,606	0,606	0,606	0,606
8,5	0,553	0,553	0,553	0,553	0,553	0,553	0,553	0,553	0,553
9,0	0,501	0,501	0,501	0,501	0,501	0,501	0,501	0,501	0,501
9,5	0,451	0,451	0,451	0,451	0,451	0,451	0,451	0,301	0,301
10,0	0,406	0,406	0,406	0,406	0,431	0,406	0,406	0,406	0,431
10,5	0,368	0,368	0,368	0,368	0,368	0,367	0,367	0,366	0,366
11,0 11,5	0,334	0,334	0,334 0,304	0,334	0,334	0,333	0,332	0,331	0,330
	0,305	0,305		0,304	0,303	0,302	0,301	0,299 0,271	0,298
12,0	0,279	0,278	0,278	0,277	0,275	0,274	0,273	,	0,269
12,5	0,256	0,255	0,254	0,252	0,251	0,249	0,248	0,246	0,244
13,0	0,234	0,233	0,232	0,230	0,229	0,227	0,225	0,224	0,222
13,5	0,215	0,214	0,212	0,211	0,209	0,207	0,205	0,203	0,201
14,0	0,198	0,196	0,195	0,193	0,191	0,189	0,187	0,185	0,183
14,5	0,182	0,180	0,179	0,177	0,175	0,173	0,171	0,169	0,167
15,0	0,167	0,166	0,164	0,162	0,160	0,158	0,156	0,154	0,152
15,5	0,154	0,153	0,151	0,149	0,147	0,145	0,143	0,140	0,138
16,0	0,142	0,141	0,139	0,137	0,135	0,133	0,130	0,128	0,126
16,5	0,132	0,130	0,128	0,126	0,124	0,122	0,120	0,118	0,115
17,0	0,123	0,121	0,119	0,117	0,115	0,112	0,110	0,108	0,106
17,5	0,114	0,112	0,110	0,108	0,106	0,104	0,102	0,100	0,098
18,0	0,107	0,105	0,103	0,101	0,099	0,097	0,095	0,093	0,092
18,5	0,101	0,099	0,097	0,095	0,093	0,091	0,089	0,088	0,086
19,0	0,095	0,093	0,091	0,089	0,087	0,086	0,084	0,083	0,081
19,5	0,090	0,088	0,086	0,085	0,083	0,081	0,080	0,078	0,077
20,0	0,086	0,084	0,082	0,081	0,079	0,078	0,076	0,075	0,074
20,5*	0,077	0,076	0,074	0,073	0,071	0,070	0,068	0,067	0,067
21,0*	0,070	0,068	0,066	0,066	0,064	0,063	0,062	0,061	0,060
21,5*	0,063	0,061	0,060	0,059	0,058	0,057	0,055	0,055	0,054
22,0*	0,056	0,055	0,054	0,053	0,052	0,051	0,050	0,049	0,048
22,5*	0,050	0,049	0,048	0,047	0,046	0,046	0,045	0,044	0,043
23,0*	0,045	0,044	0,043	0,042	0,041	0,041	0,040	0,039	0,039
23,5*	0,040	0,039	0,038	0,038	0,037	0,037	0,036	0,035	0,035
24,0*	0,036	0,035	0,035	0,034	0,033	0,033	0,032	0,032	0,031
24,5*	0,033	0,032	0,031	0,031	0,030	0,030	0,029	0,028	0,028
25,0*	0,030	0,029	0,028	0,028	0,027	0,027	0,026	0,026	0,025
25,5*	0,027	0,026	0,026	0,026	0,025	0,025	0,024	0,024	0,023
26,0*	0,025	0,025	0,024	0,024	0,023	0,023	0,022	0,022	0,022

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

für Nabenhöhen 118 m, 138 m, 148 m, 159 m und 164 m												
Windgeschwin- digkeit			Schu	ıbbeiwerte	c _⊤ bei Lufto	dichte $ ho$ [kg	/m³]					
v _H [m/s]	1,100	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300			
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872			
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860			
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845			
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831			
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820			
5,5	0,811	0,811	0,811	0,811	0,811	0,811	0,811	0,811	0,811			
6,0	0,785	0,785	0,785	0,785	0,785	0,785	0,785	0,785	0,785			
6,5	0,744	0,744	0,744	0,744	0,744	0,744	0,744	0,744	0,744			
7,0	0,695	0,695	0,695	0,695	0,695	0,695	0,695	0,695	0,695			
7,5	0,642	0,642	0,642	0,642	0,642	0,642	0,642	0,642	0,642			
8,0	0,588	0,588	0,588	0,588	0,588	0,588	0,588	0,588	0,588			
8,5	0,534	0,534	0,534	0,534	0,534	0,534	0,534	0,534	0,534			
9,0	0,481	0,481	0,481	0,481	0,481	0,481	0,481	0,481	0,481			
9,5	0,432	0,432	0,432	0,432	0,432	0,432	0,432	0,432	0,432			
10,0	0,389	0,389	0,389	0,389	0,389	0,389	0,388	0,388	0,388			
10,5	0,352	0,352	0,352	0,352	0,352	0,351	0,351	0,350	0,349			
11,0	0,320	0,320	0,320	0,319	0,318	0,318	0,317	0,315	0,314			
11,5	0,292	0,291	0,291	0,290	0,289	0,288	0,286	0,285	0,283			
12,0	0,267	0,266	0,265	0,264	0,262	0,261	0,259	0,258	0,256			
12,5	0,244	0,243	0,242	0,240	0,239	0,237	0,235	0,234	0,232			
13,0	0,223	0,222	0,221	0,219	0,217	0,216	0,214	0,212	0,210			
13,5	0,205	0,203	0,202	0,200	0,198	0,197	0,195	0,193	0,191			
14,0	0,188	0,187	0,185	0,183	0,181	0,179	0,177	0,175	0,173			
14,5	0,173	0,171	0,169	0,168	0,166	0,164	0,162	0,160	0,157			
15,0	0,159	0,157	0,155	0,153	0,151	0,149	0,147	0,145	0,143			
15,5	0,146	0,144	0,143	0,141	0,139	0,137	0,135	0,132	0,130			
16,0	0,135	0,133	0,131	0,129	0,127	0,125	0,123	0,121	0,119			
16,5	0,125	0,123	0,121	0,119	0,117	0,115	0,113	0,111	0,108			
17,0	0,116	0,114	0,112	0,110	0,108	0,106	0,104	0,102	0,100			
17,5	0,108	0,106	0,104	0,102	0,100	0,098	0,096	0,094	0,093			
18,0	0,101	0,099	0,097	0,095	0,093	0,091	0,090	0,088	0,086			
18,5	0,095	0,093	0,091	0,089	0,087	0,086	0,084	0,082	0,081			
19,0	0,090	0,088	0,086	0,084	0,082	0,081	0,079	0,078	0,076			
19,5	0,085	0,083	0,081	0,080	0,078	0,077	0,075	0,074	0,073			
20,0	0,081	0,079	0,078	0,076	0,075	0,073	0,072	0,071	0,069			
20,5*	0,073	0,071	0,070	0,068	0,067	0,066	0,065	0,064	0,062			
21,0*	0,066	0,064	0,063	0,062	0,061	0,059	0,058	0,058	0,056			
21,5*	0,059	0,058	0,057	0,055	0,055	0,053	0,052	0,052	0,050			
22,0*	0,053	0,052	0,051	0,050	0,049	0,048	0,047	0,046	0,045			
22,5*	0,047	0,046	0,046	0,045	0,044	0,043	0,042	0,042	0,040			
23,0*	0,042	0,041	0,041	0,040	0,039	0,038	0,038	0,037	0,036			
23,5*	0,038	0,037	0,037	0,036	0,035	0,034	0,034	0,033	0,032			
24,0*	0,034	0,033	0,033	0,032	0,032	0,031	0,030	0,030	0,029			
24,5*	0,031	0,030	0,030	0,029	0,028	0,028	0,027	0,027	0,026			
25,0*	0,028	0,027	0,027	0,026	0,026	0,025	0,025	0,024	0,024			
25,5*	0,026	0,025	0,025	0,024	0,024	0,023	0,023	0,022	0,022			
26,0*	0,024	0,023	0,023	0,022	0,022	0,021	0,021	0,021	0,020			

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

		für Naben	nhöhen 118	s m, 138 m,	148 m, 159	m und 164	m		
Windgeschwin- digkeit			Schu	ıbbeiwerte	c _⊤ bei Lufto	dichte $ ho$ [kg	/m³]		
v _H [m/s]	1,100	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820
5,5	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808	0,808
6,0	0,776	0,776	0,776	0,776	0,776	0,776	0,776	0,776	0,776
6,5	0,731	0,731	0,731	0,731	0,731	0,731	0,731	0,731	0,731
7,0	0,679	0,679	0,679	0,679	0,679	0,679	0,679	0,679	0,679
7,5	0,624	0,624	0,624	0,624	0,624	0,624	0,624	0,624	0,624
8,0	0,569	0,569	0,569	0,569	0,569	0,569	0,569	0,569	0,569
8,5	0,513	0,513	0,513	0,513	0,513	0,513	0,513	0,513	0,513
9,0	0,460	0,460	0,460	0,460	0,460	0,460	0,460	0,460	0,460
9,5	0,412	0,412	0,412	0,412	0,412	0,412	0,412	0,412	0,412
10,0	0,371	0,371	0,371	0,371	0,371	0,371	0,371	0,370	0,370
10,5	0,336	0,336	0,336	0,336	0,335	0,335	0,334	0,333	0,332
11,0	0,306	0,305	0,305	0,304	0,303	0,302	0,301	0,300	0,332
11,5	0,300	0,303	0,303	0,304	0,303	0,302	0,301	0,300	0,269
12,0	0,254	0,253	0,252	0,270	0,249	0,273	0,272	0,244	0,243
12,5	0,232	0,233	0,232	0,231	0,243	0,248	0,240	0,244	0,243
13,0	0,232	0,231	0,209	0,228	0,227	0,223	0,202	0,221	0,219
13,5	0,212	0,211	0,209	0,208	0,200	0,204	0,202	0,201	0,199
14,0	0,178	0,177	0,131	0,130	0,188	0,169	0,167	0,165	0,163
14,5	0,164	0,162	0,160	0,173	0,171	0,154	0,152	0,150	0,103
	0,150	0,102	0,147	0,138	0,130	0,134		0,137	
15,0 15,5	0,130	0,146	0,147	0,143	0,143	0,141	0,139 0,126	0,137	0,134 0,122
16,0	0,127	0,125	0,124	0,122	0,120	0,117	0,115	0,113	0,111
16,5	0,118	0,116	0,114 0,105	0,112	0,110	0,108	0,106	0,104 0,095	0,102
17,0	0,109	0,107 0,100		0,103	0,101	0,099	0,097 0,090		0,094
17,5 18,0	0,102	,	0,098	0,096 0,089	0,094	0,092	,	0,088	0,087
	0,095	0,093	0,091		0,087	0,086	0,084	0,082	0,081
18,5	0,089	0,087	0,085	0,084	0,082	0,080	0,079	0,077 0,073	0,076
19,0	0,084	0,082	0,081	0,079	0,077	0,076	0,074	,	0,072
19,5	0,080	0,078	0,076	0,075	0,073	0,072	0,071	0,069	0,068
20,0	0,076	0,074	0,073	0,072	0,070	0,069	0,068	0,066	0,065
20,5*	0,068	0,067	0,066	0,065	0,063	0,062	0,061	0,059	0,058
21,0*	0,062	0,060	0,059	0,058	0,057	0,056	0,055	0,053	0,053
21,5*	0,055	0,054	0,053	0,052	0,051	0,050	0,050	0,048	0,047
22,0*	0,050	0,048	0,048	0,047	0,046	0,045	0,044	0,043	0,043
22,5*	0,045	0,043	0,043	0,042	0,041	0,040	0,040	0,039	0,038
23,0*	0,040	0,039	0,038	0,038	0,037	0,036	0,036	0,035	0,034
23,5*	0,036	0,035	0,034	0,034	0,033	0,032	0,032	0,031	0,030
24,0*	0,032	0,031	0,031	0,030	0,029	0,029	0,029	0,028	0,027
24,5*	0,029	0,028	0,028	0,027	0,027	0,026	0,026	0,025	0,025
25,0*	0,026	0,025	0,025	0,025	0,024	0,024	0,023	0,023	0,022
25,5*	0,024	0,023	0,023	0,023	0,022	0,022	0,021	0,021	0,020
26,0*	0,022	0,022	0,021	0,021	0,021	0,020	0,020	0,019	0,019

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

		für Naben	nhöhen 118	m, 138 m,	148 m, 159	m und 164	l m		
Windgeschwin- digkeit			Schu	bbeiwerte	c _⊤ bei Lufto	dichte $ ho$ [kg	g/m³]		
v _H [m/s]	1,100	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820
5,5	0,802	0,802	0,802	0,802	0,802	0,802	0,802	0,802	0,802
6,0	0,764	0,764	0,764	0,764	0,764	0,764	0,764	0,764	0,764
6,5	0,715	0,715	0,715	0,715	0,715	0,715	0,715	0,715	0,715
7,0	0,660	0,660	0,660	0,660	0,660	0,660	0,660	0,660	0,660
7,5	0,603	0,603	0,603	0,603	0,603	0,603	0,603	0,603	0,603
8,0	0,546	0,546	0,546	0,546	0,546	0,546	0,546	0,546	0,546
8,5	0,491	0,491	0,491	0,491	0,491	0,491	0,491	0,491	0,491
9,0	0,438	0,438	0,438	0,438	0,438	0,438	0,438	0,438	0,438
9,5	0,392	0,392	0,392	0,392	0,392	0,392	0,392	0,392	0,391
10,0	0,353	0,353	0,353	0,353	0,353	0,352	0,352	0,351	0,349
10,5	0,320	0,320	0,319	0,318	0,318	0,317	0,316	0,314	0,313
11,0	0,290	0,289	0,289	0,288	0,286	0,285	0,284	0,282	0,280
11,5	0,264	0,263	0,261	0,260	0,259	0,257	0,255	0,254	0,252
12,0	0,240	0,239	0,237	0,236	0,234	0,232	0,230	0,229	0,226
12,5	0,219	0,217	0,216	0,214	0,212	0,210	0,208	0,206	0,204
13,0	0,199	0,198	0,196	0,194	0,192	0,190	0,188	0,186	0,184
13,5	0,182	0,180	0,179	0,177	0,175	0,173	0,171	0,168	0,166
14,0	0,167	0,165	0,163	0,161	0,159	0,157	0,155	0,152	0,150
14,5	0,152	0,150	0,149	0,146	0,144	0,142	0,140	0,138	0,136
15,0	0,140	0,138	0,136	0,134	0,132	0,129	0,127	0,125	0,123
15,5	0,128	0,126	0,124	0,122	0,120	0,118	0,116	0,113	0,111
16,0	0,118	0,116	0,114	0,112	0,109	0,107	0,105	0,103	0,101
16,5	0,108	0,106	0,104	0,102	0,100	0,098	0,096	0,094	0,093
17,0	0,100	0,098	0,096	0,094	0,092	0,090	0,089	0,087	0,086
17,5	0,093	0,091	0,089	0,087	0,086	0,084	0,082	0,081	0,079
18,0	0,087	0,085	0,083	0,081	0,080	0,078	0,077	0,075	0,074
18,5	0,081	0,080	0,078	0,076	0,075	0,074	0,072	0,071	0,070
19,0	0,077	0,075	0,074	0,072	0,071	0,070	0,068	0,067	0,066
19,5	0,073	0,071	0,070	0,069	0,067	0,066	0,065	0,064	0,063
20,0	0,070	0,068	0,067	0,066	0,064	0,063	0,062	0,061	0,060
20,5*	0,063	0,061	0,060	0,059	0,058	0,057	0,056	0,055	0,054
21,0*	0,057	0,055	0,054	0,053	0,052	0,051	0,050	0,049	0,049
21,5*	0,051	0,050	0,049	0,048	0,047	0,046	0,045	0,044	0,044
22,0*	0,046	0,044	0,044	0,043	0,042	0,041	0,041	0,040	0,039
22,5*	0,041	0,040	0,039	0,039	0,038	0,037	0,036	0,036	0,035
23,0*	0,037	0,036	0,035	0,035	0,034	0,033	0,032	0,032	0,031
23,5*	0,033	0,032	0,031	0,031	0,030	0,030	0,029	0,029	0,028
24,0*	0,029	0,029	0,028	0,028	0,027	0,027	0,026	0,026	0,025
24,5*	0,027	0,026	0,025	0,025	0,024	0,024	0,023	0,023	0,023
25,0*	0,024	0,023	0,023	0,023	0,022	0,022	0,021	0,021	0,021
25,5*	0,022	0,021	0,021	0,021	0,020	0,020	0,020	0,019	0,019
26,0*	0,021	0,020	0,020	0,019	0,019	0,019	0,018	0,018	0,018
_==,=	-,	5,525	5,525	5,515	-,515	5,515	0,510	0,010	0,010

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

für Nabenhöhen 118 m, 138 m, 148 m, 159 m und 164 m												
Windgeschwin- digkeit			Schu	bbeiwerte	c _⊤ bei Lufto	dichte $ ho$ [kg	z/m³]					
v _H [m/s]	1,100	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300			
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872			
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860			
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845			
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831			
5,0	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820			
5,5	0,796	0,796	0,796	0,796	0,796	0,796	0,796	0,796	0,796			
6,0	0,753	0,753	0,753	0,753	0,753	0,753	0,753	0,753	0,753			
6,5	0,700	0,700	0,700	0,700	0,700	0,700	0,700	0,700	0,700			
7,0	0,642	0,642	0,642	0,642	0,642	0,642	0,642	0,642	0,642			
7,5	0,583	0,583	0,583	0,583	0,583	0,583	0,583	0,583	0,583			
8,0	0,525	0,525	0,525	0,525	0,525	0,525	0,525	0,525	0,525			
8,5	0,469	0,469	0,469	0,469	0,469	0,469	0,469	0,469	0,469			
9,0	0,418	0,418	0,418	0,418	0,418	0,418	0,418	0,418	0,418			
9,5	0,374	0,374	0,374	0,374	0,374	0,374	0,373	0,373	0,372			
10,0	0,337	0,337	0,337	0,337	0,336	0,335	0,334	0,333	0,332			
10,5	0,305	0,304	0,304	0,303	0,302	0,301	0,300	0,298	0,297			
11,0	0,276	0,275	0,274	0,273	0,272	0,271	0,269	0,268	0,266			
11,5	0,251	0,250	0,248	0,247	0,245	0,244	0,242	0,240	0,239			
12,0	0,228	0,227	0,225	0,224	0,222	0,220	0,218	0,216	0,214			
12,5	0,208	0,206	0,204	0,203	0,201	0,199	0,197	0,195	0,193			
13,0	0,189	0,188	0,186	0,184	0,182	0,180	0,178	0,176	0,174			
13,5	0,173	0,171	0,169	0,167	0,165	0,163	0,161	0,159	0,157			
14,0	0,158	0,156	0,154	0,152	0,150	0,148	0,146	0,144	0,141			
14,5	0,144	0,142	0,140	0,138	0,136	0,134	0,132	0,130	0,128			
15,0	0,132	0,130	0,128	0,126	0,124	0,122	0,120	0,118	0,115			
15,5	0,121	0,119	0,117	0,115	0,113	0,111	0,109	0,107	0,105			
16,0	0,111	0,109	0,107	0,105	0,103	0,101	0,099	0,097	0,095			
16,5	0,102	0,100	0,098	0,096	0,094	0,092	0,091	0,089	0,087			
17,0	0,095	0,093	0,091	0,089	0,087	0,085	0,084	0,082	0,081			
17,5	0,088	0,086	0,084	0,082	0,081	0,079	0,078	0,076	0,075			
18,0	0,082	0,080	0,078	0,077	0,075	0,074	0,072	0,071	0,070			
18,5	0,077	0,075	0,074	0,072	0,071	0,069	0,068	0,067	0,066			
19,0	0,072	0,071	0,070	0,068	0,067	0,066	0,064	0,063	0,062			
19,5	0,069	0,067	0,066	0,065	0,064	0,062	0,061	0,060	0,059			
20,0	0,066	0,064	0,063	0,062	0,061	0,060	0,059	0,058	0,057			

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

		für Naben	nhöhen 118	m, 138 m,	148 m, 159	m und 164	l m		
Windgeschwin- digkeit		Schubbeiwerte c $_{\sf T}$ bei Luftdichte $ ho$ [kg/m $^{\sf 3}$]							
v _H [m/s]	1,100	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831
5,0	0,819	0,819	0,819	0,819	0,819	0,819	0,819	0,819	0,819
5,5	0,788	0,788	0,788	0,788	0,788	0,788	0,788	0,788	0,788
6,0	0,740	0,740	0,740	0,740	0,740	0,740	0,740	0,740	0,740
6,5	0,683	0,683	0,683	0,683	0,683	0,683	0,683	0,683	0,683
7,0	0,622	0,622	0,622	0,622	0,622	0,622	0,622	0,622	0,622
7,5	0,562	0,562	0,562	0,562	0,562	0,562	0,562	0,562	0,562
8,0	0,503	0,503	0,503	0,503	0,503	0,503	0,503	0,503	0,503
8,5	0,447	0,447	0,447	0,447	0,447	0,447	0,447	0,447	0,447
9,0	0,398	0,398	0,398	0,398	0,398	0,398	0,398	0,398	0,397
9,5	0,356	0,356	0,356	0,356	0,356	0,356	0,355	0,354	0,353
10,0	0,321	0,321	0,321	0,320	0,319	0,318	0,317	0,316	0,315
10,5	0,290	0,289	0,289	0,288	0,287	0,285	0,284	0,283	0,281
11,0	0,263	0,262	0,260	0,259	0,258	0,256	0,255	0,253	0,251
11,5	0,238	0,237	0,235	0,234	0,232	0,231	0,229	0,227	0,225
12,0	0,216	0,215	0,213	0,212	0,210	0,208	0,206	0,204	0,202
12,5	0,197	0,195	0,193	0,192	0,190	0,188	0,186	0,184	0,182
13,0	0,179	0,177	0,175	0,174	0,172	0,170	0,168	0,166	0,163
13,5	0,163	0,161	0,159	0,157	0,155	0,153	0,151	0,149	0,147
14,0	0,149	0,147	0,145	0,143	0,141	0,139	0,137	0,135	0,132
14,5	0,136	0,134	0,132	0,130	0,128	0,126	0,124	0,122	0,119
15,0	0,124	0,122	0,120	0,118	0,116	0,114	0,112	0,110	0,108
15,5	0,114	0,112	0,110	0,108	0,106	0,104	0,102	0,100	0,098
16,0	0,104	0,102	0,100	0,098	0,096	0,094	0,093	0,091	0,089
16,5	0,096	0,094	0,092	0,090	0,088	0,087	0,085	0,083	0,082
17,0	0,089	0,087	0,085	0,083	0,081	0,080	0,078	0,077	0,076
17,5	0,082	0,080	0,079	0,077	0,076	0,074	0,073	0,071	0,070
18,0	0,077	0,075	0,073	0,072	0,071	0,069	0,068	0,067	0,066
18,5	0,072	0,070	0,069	0,068	0,066	0,065	0,064	0,063	0,062
19,0	0,068	0,067	0,065	0,064	0,063	0,062	0,060	0,059	0,058
19,5	0,065	0,063	0,062	0,061	0,060	0,059	0,058	0,057	0,056
20,0	0,062	0,060	0,059	0,058	0,057	0,056	0,055	0,054	0,053

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

		für Naben	höhen 118	m, 138 m,	148 m, 159	m und 164	l m		
Windgeschwin- digkeit	Schubbeiwerte c $_{T}$ bei Luftdichte $ ho$ [kg/m 3]								
ν _H [m/s]	1,100	1,125	1,150	1,175	1,200	1,225	1,250	1,275	1,300
3,0	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872	0,872
3,5	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860	0,860
4,0	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845	0,845
4,5	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831	0,831
5,0	0,816	0,816	0,816	0,816	0,816	0,816	0,816	0,816	0,816
5,5	0,780	0,780	0,780	0,780	0,780	0,780	0,780	0,780	0,780
6,0	0,728	0,728	0,728	0,728	0,728	0,728	0,728	0,728	0,728
6,5	0,668	0,668	0,668	0,668	0,668	0,668	0,668	0,668	0,668
7,0	0,607	0,607	0,607	0,607	0,607	0,607	0,607	0,607	0,607
7,5	0,546	0,546	0,546	0,546	0,546	0,546	0,546	0,546	0,546
8,0	0,486	0,486	0,486	0,486	0,486	0,486	0,486	0,486	0,486
8,5	0,431	0,431	0,431	0,431	0,431	0,431	0,431	0,431	0,431
9,0	0,383	0,383	0,383	0,383	0,383	0,383	0,383	0,382	0,382
9,5	0,343	0,343	0,343	0,343	0,343	0,342	0,341	0,340	0,339
10,0	0,309	0,309	0,308	0,307	0,306	0,305	0,304	0,303	0,301
10,5	0,279	0,278	0,277	0,276	0,275	0,273	0,272	0,270	0,268
11,0	0,252	0,251	0,249	0,248	0,247	0,245	0,243	0,242	0,240
11,5	0,228	0,227	0,225	0,224	0,222	0,220	0,218	0,216	0,214
12,0	0,207	0,205	0,204	0,202	0,200	0,198	0,196	0,194	0,192
12,5	0,188	0,186	0,184	0,182	0,181	0,179	0,177	0,174	0,172
13,0	0,171	0,169	0,167	0,165	0,163	0,161	0,159	0,157	0,155
13,5	0,155	0,153	0,151	0,150	0,147	0,145	0,143	0,141	0,139
14,0	0,141	0,140	0,138	0,136	0,134	0,131	0,129	0,127	0,125
14,5	0,129	0,127	0,125	0,123	0,121	0,119	0,117	0,115	0,112
15,0	0,118	0,116	0,114	0,112	0,110	0,108	0,106	0,104	0,102
15,5	0,108	0,106	0,104	0,102	0,100	0,098	0,096	0,094	0,092
16,0	0,099	0,097	0,095	0,093	0,091	0,089	0,087	0,086	0,084
16,5	0,091	0,089	0,087	0,085	0,083	0,082	0,080	0,079	0,077
17,0	0,083	0,082	0,080	0,078	0,077	0,075	0,074	0,073	0,071
17,5	0,077	0,076	0,074	0,073	0,071	0,070	0,069	0,068	0,066
18,0	0,072	0,071	0,069	0,068	0,067	0,065	0,064	0,063	0,062
18,5	0,068	0,067	0,065	0,064	0,063	0,062	0,060	0,059	0,058
19,0	0,064	0,063	0,062	0,060	0,059	0,058	0,057	0,056	0,055
19,5	0,061	0,060	0,059	0,057	0,056	0,055	0,054	0,053	0,053
20,0	0,058	0,057	0,056	0,055	0,054	0,053	0,052	0,051	0,050

^{*} Diese Werte beruhen auf einem ertrags- und lastoptimierten Betrieb, der nicht an allen Standorten realisierbar ist.

Octave sound power levels / Oktav-Schallleistungspegel

Nordex N163/6.X

© Nordex Energy SE & Co. KG, Langenhorner Chaussee 600, D-22419 Hamburg, Germany All rights reserved. Observe protection notice ISO 16016.

Alle Rechte vorbehalten. Schutzvermerk ISO 16016 beachten.

Nordex N163/6.X – Operating modes and hub heights / Betriebsweisen und Nabenhöhen

operating mode / Betriebs- weise	rated power / Nennleis- tung	available hub heights / verfügbare Nabenhöhen [m]						
	[kW]	118	138	148	159	164		
Mode 1	6800	•	•	•	•	•		
Mode 2	6690	•	•	•	•	•		
Mode 3	6530	•	•	•	•	•		
Mode 4	6370	•	-	•	•	•		
Mode 5	6240	•	-	•	•	•		
Mode 6	6080	•	-	-	-	•		
Mode 7	5940	0	-	_	_	0		
Mode 8	5820	0	-	-	-	0		
Mode 9	5270	0	0	0	0	0		
Mode 10	5180	0	0	0	0	0		
Mode 11	4810	•	•	•	•	•		
Mode 12	4520	•	•	•	•	•		
Mode 13	4230	•	•	•	•	•		
Mode 14	3870	•	•	•	•	•		
Mode 15	3620	•	•	•	•	•		
Mode 16	3380	•	•	•	•	•		
Mode 17	3180	•	•	•	•	•		

- mode available / Betriebsweise verfügbar
- mode on request / Betriebsweise auf Anfrage
- mode not available / Betriebsweise nicht verfügbar

Abbreviations / Abkürzungen:

STE ... Serrated Trailing Edge / Serrations

Octave sound power levels / Oktav-Schallleistungspegel Nordex N163/6.X with and without / mit und ohne serrated trailing edge

Basis / Grundlagen:

The expected octave sound power levels of the Nordex N163/6.X are to be determined on basis of aerodynamical calculations and expected sound power levels. These values are valid for 118 m, 138 m, 148 m, 159 m and 164 m (see available hub heights on pg. 2).

The expected octave sound power levels are only for information and will not be warranted.

Die erwarteten Oktav-Schallleistungspegel der Nordex N163/6.X werden auf der Basis aerodynamischer Berechnungen und der erwarteten Gesamt-Schallleistungspegel ermittelt. Diese Werte sind gültig für die Nabenhöhen 118 m, 138 m, 148 m, 159 m und 164 m (siehe verfügbare Nabenhöhen auf S. 2). Die erwarteten Oktav-Schallleistungspegel dienen nur der Information und werden nicht gewährleistet.

Nordex N163/6.X without STE / ohne STE

	00	ctave sound	power leve	ls / Oktav-S	challleistun	gspegel in d	B(A)		
operation mode / Betriebsweise	63 Hz	125 Hz	octave band	d mid frequ 500 Hz	ency / Okta 1000 Hz	vband-Mitte 2000 Hz	enfrequenz 4000 Hz	8000 Hz	Total
Mode 1	92.3	97.1	100.2	101.7	103.3	101.5	90.0	69.8	108.4
Mode 2	91.9	96.7	99.8	101.3	102.9	101.1	89.6	69.4	108.0
Mode 3	91.4	96.2	99.3	100.8	102.4	100.6	89.1	68.9	107.5
Mode 4	90.9	95.7	98.8	100.3	101.9	100.1	88.6	68.4	107.0
Mode 5	90.4	95.2	98.3	99.8	101.4	99.6	88.1	67.9	106.5
Mode 6	89.9	94.7	97.8	99.3	100.9	99.1	87.6	67.4	106.0
Mode 7	89.4	94.2	97.3	98.8	100.4	98.6	87.1	66.9	105.5
Mode 8	88.9	93.7	96.8	98.3	99.9	98.1	86.6	66.4	105.0
Mode 9	86.9	91.7	94.8	96.3	97.9	96.1	84.6	64.4	103.0
Mode 10	86.4	91.2	94.3	95.8	97.4	95.6	84.1	63.9	102.5
Mode 11	85.9	90.7	93.8	95.3	96.9	95.1	83.6	63.4	102.0
Mode 12	85.4	90.2	93.3	94.8	96.4	94.6	83.1	62.9	101.5
Mode 13	84.9	89.7	92.8	94.3	95.9	94.1	82.6	62.4	101.0
Mode 14	84.4	89.2	92.3	93.8	95.4	93.6	82.1	61.9	100.5
Mode 15	83.9	88.7	91.8	93.3	94.9	93.1	81.6	61.4	100.0
Mode 16	83.4	88.2	91.3	92.8	94.4	92.6	81.1	60.9	99.5
Mode 17	82.9	87.7	90.8	92.3	93.9	92.1	80.6	60.4	99.0

Nordex N163/6.X with STE / mit STE

	00	ctave sound	power leve	ls / Oktav-S	challleistun	gspegel in d	IB(A)		
operation mode / Betriebsweise	octave band mid frequency / Oktavband-Mittenfrequenz								
Detilebsweise	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	Total
Mode 1	92.4	97.1	99.4	99.9	100.3	98.2	88.7	69.8	106.4
Mode 2	92.0	96.7	99.0	99.5	99.9	97.8	88.3	69.4	106.0
Mode 3	91.5	96.2	98.5	99.0	99.4	97.3	87.8	68.9	105.5
Mode 4	91.0	95.7	98.0	98.5	98.9	96.8	87.3	68.4	105.0
Mode 5	90.5	95.2	97.5	98.0	98.4	96.3	86.8	67.9	104.5
Mode 6	90.0	94.7	97.0	97.5	97.9	95.8	86.3	67.4	104.0
Mode 7	89.5	94.2	96.5	97.0	97.4	95.3	85.8	66.9	103.5
Mode 8	89.0	93.7	96.0	96.5	96.9	94.8	85.3	66.4	103.0
Mode 9	87.0	91.7	94.0	94.5	94.9	92.8	83.3	64.4	101.0
Mode 10	86.5	91.2	93.5	94.0	94.4	92.3	82.8	63.9	100.5
Mode 11	86.0	90.7	93.0	93.5	93.9	91.8	82.3	63.4	100.0
Mode 12	85.5	90.2	92.5	93.0	93.4	91.3	81.8	62.9	99.5
Mode 13	85.0	89.7	92.0	92.5	92.9	90.8	81.3	62.4	99.0
Mode 14	84.5	89.2	91.5	92.0	92.4	90.3	80.8	61.9	98.5
Mode 15	84.0	88.7	91.0	91.5	91.9	89.8	80.3	61.4	98.0
Mode 16	83.5	88.2	90.5	91.0	91.4	89.3	79.8	60.9	97.5
Mode 17	83.0	87.7	90.0	90.5	90.9	88.8	79.3	60.4	97.0